Charge density waves in low-dimensional material

被引:1
作者
Fan Jin-Ze [1 ,2 ]
Fang Zhan-Bo [1 ]
Luo Chao-Jie [1 ]
Zhang Hui [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
charge density wave; low dimensional systems; superconductivity; METAL-INSULATOR-TRANSITION; TRANSPORT-PROPERTIES; NONLINEAR TRANSPORT; PHASE-TRANSITION; CHIRAL SOLITONS; QUANTUM CHAINS; FERMI-SURFACE; SUPERCONDUCTIVITY; ORDER; STATE;
D O I
10.7498/aps.71.20220052
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Charge density waves (CDWs) have triggered off extensive research in low-dimensional systems. Thediscovery of CDW offers a new crucial clue to understanding the intrinsic mechanisms of low-dimensionalelectron-phonon coupling and electron correlation. In addition, the physical properties of low-dimensionalmaterial such as magnetism and superconductivity can be fine-tuned with accurately and effectively controlledCDW phase. At the beginning,we briefly introduce the basic properties of CDW in one-dimensional and quasione-dimensional materials, revealing the physical proprieties of the CDW, for instance, the excited state and themanipulation technologies. Then, focusing on the CDW in a two-dimensional system, we mainly introduce therecent research progress and the generation mechanism of CDW of two-dimensional materials. The interactionbetween CDW and Mott insulator and between superconductivity and other orders such as spin density waveand pair density wave provide a new perspective to research the multi-electron collective excitation and electroninteraction. The manipulation of multi-electron collective excitation and electron-phonon interaction in CDWthrough doping, high pressure and laser pulse is also introduced and shares similarity with the one-dimensionalsystem. Finally, in this article we propose a potential research application of two dimensional CDW
引用
收藏
页数:24
相关论文
共 230 条
[1]   The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond [J].
Agterberg, Daniel F. ;
Davis, J. C. Seamus ;
Edkins, Stephen D. ;
Fradkin, Eduardo ;
Van Harlingen, Dale J. ;
Kivelson, Steven A. ;
Lee, Patrick A. ;
Radzihovsky, Leo ;
Tranquada, John M. ;
Wang, Yuxuan .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020, 2020, 11 :231-270
[2]   Absence of dynamic fluctuation in metallic In chains on Si(111): Core-level and valence-band photoemission study [J].
Ahn, J. R. ;
Byun, J. H. ;
Kim, J. K. ;
Yeom, H. W. .
PHYSICAL REVIEW B, 2007, 75 (03)
[3]   Metal-insulator transition in Au atomic chains on Si with two proximal bands [J].
Ahn, JR ;
Yeom, HW ;
Yoon, HS ;
Lyo, IW .
PHYSICAL REVIEW LETTERS, 2003, 91 (19)
[4]   Charge Density Wave Vortex Lattice Observed in Graphene-Passivated 1T-TaS2 by Ambient Scanning Tunneling Microscopy [J].
Altvater, Michael A. ;
Tilak, Nikhil ;
Rao, Skandaprasad ;
Li, Guohong ;
Won, Choong-Jae ;
Cheong, Sang-Wook ;
Andrei, Eva Y. .
NANO LETTERS, 2021, 21 (14) :6132-6138
[5]   Real-Space Coexistence of the Melted Mott State and Superconductivity in Fe-Substituted 1T-TaS2 [J].
Ang, R. ;
Tanaka, Y. ;
Ieki, E. ;
Nakayama, K. ;
Sato, T. ;
Li, L. J. ;
Lu, W. J. ;
Sun, Y. P. ;
Takahashi, T. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[6]   Quasiparticle Interference, Quasiparticle Interactions, and the Origin of the Charge Density Wave in 2H-NbSe2 [J].
Arguello, C. J. ;
Rosenthal, E. P. ;
Andrade, E. F. ;
Jin, W. ;
Yeh, P. C. ;
Zaki, N. ;
Jia, S. ;
Cava, R. J. ;
Fernandes, R. M. ;
Millis, A. J. ;
Valla, T. ;
Osgood, R. M., Jr. ;
Pasupathy, A. N. .
PHYSICAL REVIEW LETTERS, 2015, 114 (03)
[7]   Visualizing the charge density wave transition in 2H-NbSe2 in real space [J].
Arguello, C. J. ;
Chockalingam, S. P. ;
Rosenthal, E. P. ;
Zhao, L. ;
Gutierrez, C. ;
Kang, J. H. ;
Chung, W. C. ;
Fernandes, R. M. ;
Jia, S. ;
Millis, A. J. ;
Cava, R. J. ;
Pasupathy, A. N. .
PHYSICAL REVIEW B, 2014, 89 (23)
[8]   ANGLE-RESOLVED PHOTOEMISSION FROM TISE2 USING SYNCHROTRON RADIATION [J].
BACHRACH, RZ ;
SKIBOWSKI, M ;
BROWN, FC .
PHYSICAL REVIEW LETTERS, 1976, 37 (01) :40-42
[9]  
Barja S, 2016, NAT PHYS, V12, P751, DOI [10.1038/nphys3730, 10.1038/NPHYS3730]
[10]   Mirror twin grain boundaries in molybdenum dichalcogenides [J].
Batzill, Matthias .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (49)