Asymptotically Stable Gait Primitives for Planning Dynamic Bipedal Locomotion in Three Dimensions

被引:18
作者
Gregg, Robert D. [1 ]
Bretl, Timothy [2 ]
Spong, Mark W. [3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, 1406 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Aerosp Engn, 1002 W Green St, Urbana, IL 61801 USA
[3] Univ Texas Richardson, Dept Elect Engn, Richardson, TX 75080 USA
来源
2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2010年
关键词
MOTION; WALKING;
D O I
10.1109/ROBOT.2010.5509585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper applies geometric reduction-based control to derive a set of asymptotically stable dynamic walking gaits for a 3-D bipedal robot, each corresponding to walking along a nominal arc of constant curvature for a fixed number of steps. We show that any such set of asymptotically stable gait primitives may be composed in arbitrary order without causing the robot to fall, so any walking path that is a sequence of these gaits may be followed by the robot. This result enables motion planning for bipedal dynamic walkers, which are fast and energetically efficient, in a similar manner to what is already possible for biped locomotion based on Zero Moment Point (ZMP) equilibrium constraints.
引用
收藏
页码:1695 / 1702
页数:8
相关论文
共 30 条
[1]  
ALPCAN T, 2009, DYNAMICS CO IN PRESS
[2]  
Ames A. D., 2007, C DEC CONTR NEW ORL
[3]   Sequential composition of dynamically dexterous robot behaviors [J].
Burridge, RR ;
Rizzi, AA ;
Koditschek, DE .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1999, 18 (06) :534-555
[4]  
COLLINS SH, 2005, INT C ROB AUT BARC S
[5]   Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision [J].
Courtine, G ;
Schieppati, M .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2003, 18 (01) :177-190
[7]   Maneuver-based motion planning for nonlinear systems with symmetries [J].
Frazzoli, E ;
Dahleh, MA ;
Feron, E .
IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (06) :1077-1091
[8]  
Goswami A., 1996, 2996 I NAT RECH INF
[9]  
Gregg R. D., 2009, INT C INT ROB SYST S
[10]  
GREGG RD, 2009, INT J ROBOT IN PRESS