Discriminative State-Space Models

被引:0
|
作者
Kuznetsov, Vitaly [1 ]
Mohri, Mehryar [1 ,2 ]
机构
[1] Google Res, New York, NY 10011 USA
[2] Courant Inst, New York, NY 10011 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017) | 2017年 / 30卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce and analyze Discriminative State-Space Models for forecasting non-stationary time series. We provide data-dependent generalization guarantees for learning these models based on the recently introduced notion of discrepancy. We provide an in-depth analysis of the complexity of such models. We also study the generalization guarantees for several structural risk minimization approaches to this problem and provide an efficient implementation for one of them which is based on a convex objective.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Standard state-space models preclude unawareness
    Dekel, E
    Lipman, BL
    Rustichini, A
    ECONOMETRICA, 1998, 66 (01) : 159 - 173
  • [22] MULTIDIMENSIONAL STATE-SPACE MODELS - A COMPARATIVE OVERVIEW
    TZAFESTAS, SG
    THEODOROU, NJ
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1984, 26 (05) : 432 - 442
  • [23] Review of State-Space Models for Fisheries Science
    Aeberhard, William H.
    Flemming, Joanna Mills
    Nielsen, Anders
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 : 215 - 235
  • [24] Latent State-Space Models for Neural Decoding
    Aghagolzadeh, Mehdi
    Truccolo, Wilson
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 3033 - 3036
  • [25] The Ordered Matrix Dirichlet for State-Space Models
    Stoehr, Niklas
    Radford, Benjamin J.
    Cotterell, Ryan
    Schein, Aaron
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [26] IDENTIFIABILITY OF STATE-SPACE MODELS - WALTER,E
    SCHMITT, R
    ZEITSCHRIFT FUR PSYCHOLOGIE, 1987, 195 (01): : 122 - 122
  • [27] Variational learning for switching state-space models
    Ghahramani, Z
    Hinton, GE
    NEURAL COMPUTATION, 2000, 12 (04) : 831 - 864
  • [28] State-Space Models for Clustering of Compositional Trajectories
    Panarotto, Andrea
    Cattelan, Manuela
    Bellio, Ruggero
    DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024, 2024, : 197 - 203
  • [29] FILTERING AND SMOOTHING ALGORITHMS FOR STATE-SPACE MODELS
    KOHN, R
    ANSLEY, CF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 18 (6-7) : 515 - 528
  • [30] An algorithm for estimating parameters of state-space models
    Wu, LSY
    Pai, JS
    Hosking, JRM
    STATISTICS & PROBABILITY LETTERS, 1996, 28 (02) : 99 - 106