HyPhy 2.5-A Customizable Platform for Evolutionary Hypothesis Testing Using Phylogenies

被引:378
作者
Pond, Sergei L. Kosakovsky [1 ]
Poon, Art F. Y. [2 ]
Velazquez, Ryan [1 ]
Weaver, Steven [1 ]
Hepler, N. Lance [3 ]
Murrell, Ben [4 ]
Shank, Stephen D. [1 ]
Magalis, Brittany Rife [1 ]
Bouvier, Dave [5 ]
Nekrutenko, Anton [5 ]
Wisotsky, Sadie [1 ,6 ]
Spielman, Stephanie J. [1 ,7 ]
Frost, Simon D. W. [8 ,9 ]
Muse, Spencer, V [6 ]
机构
[1] Temple Univ, Inst Genom & Evolutionary Med, Philadelphia, PA 19122 USA
[2] Western Univ, Pathol & Lab Med, London, ON, Canada
[3] 10X Genom, Pleasanton, CA USA
[4] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden
[5] Penn State Univ, Biochem & Mol Biol, State Coll, PA USA
[6] North Carolina State Univ, Dept Stat & Bioinformat Res Ctr, Raleigh, NC USA
[7] Rowan Univ, Glassboro, NJ USA
[8] Univ Cambridge, Dept Vet Med, Cambridge, England
[9] Alan Turing Inst, London, England
基金
英国工程与自然科学研究理事会;
关键词
evolutionary analysis; natural selection; hypothesis testing; statistical inference; software engineering; MODEL; SOFTWARE; SITES;
D O I
10.1093/molbev/msz197
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
HYpothesis testing using PHYlogenies (HyPhy) is a scriptable, open-source package for fitting a broad range of evolutionary models to multiple sequence alignments, and for conducting subsequent parameter estimation and hypothesis testing, primarily in the maximum likelihood statistical framework. It has become a popular choice for characterizing various aspects of the evolutionary process: natural selection, evolutionary rates, recombination, and coevolution. The 2.5 release (available from www.hyphy.org) includes a completely re-engineered computational core and analysis library that introduces new classes of evolutionary models and statistical tests, delivers substantial performance and stability enhancements, improves usability, streamlines end-to-end analysis workflows, makes it easier to develop custom analyses, and is mostly backward compatible with previous HyPhy releases.
引用
收藏
页码:295 / 299
页数:5
相关论文
共 27 条
[1]  
[Anonymous], 2019, PLOS COMPUT BIOL
[2]  
[Anonymous], SYST BIOL
[3]  
Blankenberg Daniel, 2010, Curr Protoc Mol Biol, VChapter 19, DOI 10.1002/0471142727.mb1910s89
[4]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[5]   The State of Software for Evolutionary Biology [J].
Darriba, Diego ;
Flouri, Tomas ;
Stamatakis, Alexandros .
MOLECULAR BIOLOGY AND EVOLUTION, 2018, 35 (05) :1037-1046
[6]   A hidden Markov Model approach to variation among sites in rate of evolution [J].
Felsenstein, J ;
Churchill, GA .
MOLECULAR BIOLOGY AND EVOLUTION, 1996, 13 (01) :93-104
[7]   Bioconda: sustainable and comprehensive software distribution for the life sciences [J].
Gruening, Bjoern ;
Dale, Ryan ;
Sjoedin, Andreas ;
Chapman, Brad A. ;
Rowe, Jillian ;
Tomkins-Tinch, Christopher H. ;
Valieris, Renan ;
Koester, Johannes ;
Team, Bioconda .
NATURE METHODS, 2018, 15 (07) :475-476
[8]   RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language [J].
Hohna, Sebastian ;
Landis, Michael J. ;
Heath, Tracy A. ;
Boussau, Bastien ;
Lartillot, Nicolas ;
Moore, Brian R. ;
Huelsenbeck, John P. ;
Ronquist, Fredrik .
SYSTEMATIC BIOLOGY, 2016, 65 (04) :726-736
[9]  
Izquierdo-Carrasco Fernando, 2013, 2013 IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW), P530, DOI 10.1109/IPDPSW.2013.103
[10]   Software Engineering for Computational Science: Past, Present, Future [J].
Johanson, Arne N. ;
Hasselbring, Wilhelm .
COMPUTING IN SCIENCE & ENGINEERING, 2018, 20 (02) :90-109