Ni nanoparticles dispersed on oxygen vacancies-rich CeO2 nanoplates for enhanced low-temperature CO2 methanation performance

被引:116
作者
Du, Yixiong [1 ]
Qin, Chuan [1 ]
Xu, Yanfei [1 ]
Xu, Di [2 ]
Bai, Jingyang [1 ]
Ma, Guangyuan [1 ]
Ding, Mingyue [1 ,3 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Inst Technol Sci, Hubei Prov Key Lab Accoutrement Tech Fluid Machin, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518108, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-temperature CO2 methanation; Oxygen vacancies; Ceria; NiO-CeO2; structure; CATALYSTS; SURFACE; CERIA; HYDROGEN; SUPPORT; PROMOTION; REMOVAL; NI/CEO2;
D O I
10.1016/j.cej.2021.129402
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing efficient catalysts with superior low-temperature catalytic performance is highly promising yet challenging for CO2 methanation. Here we synthesized a nanoplate-shaped CeO2, which was rich in oxygen vacancies, as the carrier to disperse the nickel nanoparticles. The resultant catalyst (Ni/CeO2-P) showed remarkable low-temperature CO2 methanation performance with a CO2 conversion of high than 84% and 100% CH4 selectivity at a low temperature of 300 degrees C. A 100 h-on-stream test at 300 degrees C demonstrated the excellent stability of Ni/CeO2-P. Even when the WHSV rose as high as 30000 mL g(-1) h(-1), the Ni/CeO2-P catalyst still possessed a maximum CO2 conversion of approximately 79%. The surface characterization demonstrated that the abundant oxygen vacancies on the CeO2 nanoplates led to more amounts of NiO-CeO2 structures formed, which resulted in a stronger interaction between Ni metal and CeO2 support. This stronger NiO-CeO2 interaction was proved extraordinary in promoting the reaction performance as compared with metallic Ni. Also, by the in-situ DRIFTS technology, the reaction intermediates and possible reaction pathway were raised for CO2 methanation.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO2 Methanation [J].
Alcalde-Santiago, Virginia ;
Davo-Quinonero, Arantxa ;
Lozano-Castello, Dolores ;
Quindimil, Adrian ;
De-La-Torre, Unai ;
Pereda-Ayo, Benat ;
Gonzalez-Marcos, Jose A. ;
Gonzalez-Velasco, Juan R. ;
Bueno-Lopez, Agustin .
CHEMCATCHEM, 2019, 11 (02) :810-819
[2]   Highly Active Ni/xNa/CeO2 Catalyst for the Water Gas Shift Reaction: Effect of Sodium on Methane Suppression [J].
Ang, M. L. ;
Oemar, U. ;
Saw, E. T. ;
Mo, L. ;
Kathiraser, Y. ;
Chia, B. H. ;
Kawi, S. .
ACS CATALYSIS, 2014, 4 (09) :3237-3248
[3]   Innovative power-to-gas plant concepts for upgrading of gasification bio-syngas through steam electrolysis and catalytic methanation [J].
Anghilante, Regis ;
Mueller, Christian ;
Schmid, Max ;
Colomar, David ;
Ortloff, Felix ;
Sporl, Reinhold ;
Brisse, Annabelle ;
Graf, Frank .
ENERGY CONVERSION AND MANAGEMENT, 2019, 183 :462-473
[4]   CO2 methanation over heterogeneous catalysts: recent progress and future prospects [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Ahmad, A. .
GREEN CHEMISTRY, 2015, 17 (05) :2647-2663
[5]  
Cárdenas-Arenas A, 2020, APPL MATER TODAY, V19, DOI [10.1016/j.apmt.2019.100591, 10.1016/j.apmt.2020.100591]
[6]   Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts [J].
Cardenas-Arenas, A. ;
Quindimil, A. ;
Davo-Quinonero, A. ;
Bailon-Garcia, E. ;
Lozano-Castello, D. ;
De-La-Torre, U. ;
Pereda-Ayo, B. ;
Gonzalez-Marcos, J. A. ;
Gonzalez-Velasco, J. R. ;
Bueno-Lopez, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 265
[7]   Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization [J].
Chen, Dingkai ;
He, Dedong ;
Lu, Jichang ;
Zhong, Liping ;
Liu, Feng ;
Liu, Jiangping ;
Yu, Jie ;
Wan, Gengping ;
He, Sufang ;
Luo, Yongming .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 218 :249-259
[8]   ZnO modified TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions [J].
Chen, Huayao ;
Tang, Minni ;
Rui, Zebao ;
Wang, Xuyu ;
Ji, Hongbing .
CATALYSIS TODAY, 2016, 264 :23-30
[9]  
Das S, 2018, NANOSCALE, V10, P6409, DOI [10.1039/c7nr09625a, 10.1039/C7NR09625A]
[10]   Support interaction of Ni nanocluster based catalysts applied in CO2 reforming [J].
Das, Subhasis ;
Thakur, Sharvani ;
Bag, Arijit ;
Gupta, Manveer Singh ;
Mondal, Prasenjit ;
Bordoloi, Ankur .
JOURNAL OF CATALYSIS, 2015, 330 :46-60