Stochastic stimulated electronic x-ray Raman spectroscopy

被引:35
|
作者
Kimberg, Victor [1 ,2 ]
Rohringer, Nina [2 ,3 ,4 ]
机构
[1] Royal Inst Technol, Theoret Chem & Biol, S-10691 Stockholm, Sweden
[2] Max Planck Inst Phys Komplexer Syst, Noethnitzer Str 38, D-01187 Dresden, Germany
[3] Ctr Free Electron Laser Sci, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
STRUCTURAL DYNAMICS-US | 2016年 / 3卷 / 03期
基金
瑞典研究理事会;
关键词
CHARGE-TRANSFER; DYNAMICS; SCATTERING; LASER; SPECTRA; CRYSTALLOGRAPHY; EMISSION; COHERENT; PULSES;
D O I
10.1063/1.4940916
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s -> pi* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. (C) 2016 Author(s).
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Electronic structure of ZrCuSiAs and ZrCuSiP by X-ray photoelectron and absorption spectroscopy
    Blanchard, Peter E. R.
    Cavell, Ronald G.
    Mar, Arthur
    JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (07) : 1536 - 1544
  • [42] Electronic structure of GaInN semiconductors investigated by x-ray absorption spectroscopy
    Guo, Q. X.
    Senda, H.
    Saito, K.
    Tanaka, T.
    Nishio, M.
    Ding, J.
    Fan, T. X.
    Zhang, D.
    Wang, X. Q.
    Liu, S. T.
    Shen, B.
    Ohtani, R.
    APPLIED PHYSICS LETTERS, 2011, 98 (18)
  • [43] Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy
    Mori, R. Alonso
    Paris, E.
    Giuli, G.
    Eeckhout, S. G.
    Kavcic, M.
    Zitnik, M.
    Bucar, K.
    Pettersson, L. G. M.
    Glatzel, P.
    ANALYTICAL CHEMISTRY, 2009, 81 (15) : 6516 - 6525
  • [44] High-resolution x-ray spectrometer for x-ray absorption fine structure spectroscopy
    Chin, D. A.
    Nilson, P. M.
    Mastrosimone, D.
    Guy, D.
    Ruby, J. J.
    Bishel, D. T.
    Seely, J. F.
    Coppari, F.
    Ping, Y.
    Rygg, J. R.
    Collins, G. W.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (01)
  • [45] Characterization of New Cocrystals by Raman Spectroscopy, Powder X-ray Diffraction, Differential Scanning Calorimetry, and Transmission Raman Spectroscopy
    Elbagerma, M. A.
    Edwards, H. G. M.
    Munshi, T.
    Hargreaves, M. D.
    Matousek, Pavel
    Scowen, I. J.
    CRYSTAL GROWTH & DESIGN, 2010, 10 (05) : 2360 - 2371
  • [46] Electronic structure of Mn in (Zn, Mn)O probed by resonant X-ray emission spectroscopy
    Jin, J.
    Chang, G. S.
    Xu, W.
    Zhou, Y. X.
    Boukhvalov, D. W.
    Finkelstein, L. D.
    Kurmaev, E. Z.
    Zhang, X. Y.
    Moewes, A.
    SOLID STATE COMMUNICATIONS, 2010, 150 (23-24) : 1065 - 1068
  • [47] Probing the Electronic Structure of a Photoexcited Solar Cell Dye with Transient X-ray Absorption Spectroscopy
    Van Kuiken, Benjamin E.
    Huse, Nils
    Cho, Hana
    Strader, Matthew L.
    Lynch, Michael S.
    Schoenlein, Robert W.
    Khalil, Munira
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (12): : 1695 - 1700
  • [48] Nanofocused x-ray photon correlation spectroscopy
    Berkowicz, Sharon
    Das, Sudipta
    Reiser, Mario
    Filianina, Mariia
    Bin, Maddalena
    Crevatin, Giulio
    Hennies, Franz
    Weninger, Clemens
    Bjorling, Alexander
    Bell, Paul
    Perakis, Fivos
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [49] High-pressure investigation on prehnite: X-ray diffraction and Raman spectroscopy
    Zhang, Qian
    Qin, Fei
    Niu, Jingjing
    Wu, Xiang
    HIGH TEMPERATURES-HIGH PRESSURES, 2018, 47 (03) : 213 - 221
  • [50] Raman spectroscopy and X-ray diffraction of diphenylphosphoryl azide under high pressures
    Yang Wen
    Wei Huili
    Yu Tianyi
    Jiang Junru
    Wang Jian
    He Zhijun
    Hou Xinmei
    Cui Qiliang
    Zhu Hongyang
    JOURNAL OF RAMAN SPECTROSCOPY, 2022, 53 (12) : 2123 - 2128