An adaptive multigrid conjugate gradient method for the inversion of a nonlinear convection-diffusion equation

被引:5
作者
Liu, Tao [1 ]
机构
[1] Northeast Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066000, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2018年 / 26卷 / 05期
基金
中国国家自然科学基金;
关键词
Inversion; convection-diffusion equation; multigrid; porous media flow; SURFACE HEAT-FLUX; RECONSTRUCTION; IDENTIFICATION; PERMEABILITY; TOMOGRAPHY; ALGORITHMS; FIELD; FLOW;
D O I
10.1515/jiip-2016-0062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of estimating the permeability in a nonlinear convection-diffusion equation. To overcome the large calculation burden of conventional methods, we apply an adaptive multigrid conjugate gradient method to solve this inverse problem. This new method combines the multigrid multiscale idea with the conjugate gradient method, and adopts the necessary condition that the optimum solution should be the fixed point of the multigrid inversion method. Some numerical results verify that the proposed method both dramatically reduces the required computations and improves the inversion quality.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 25 条
[1]   MULTIGRID ALGORITHMS FOR INVERSE PROBLEMS WITH LINEAR PARABOLIC PDE CONSTRAINTS [J].
Adavani, Santi S. ;
Biros, George .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :369-397
[2]   A multigrid solution for the Cahn-Hilliard equation on nonuniform grids [J].
Choi, Yongho ;
Jeong, Darae ;
Kim, Junseok .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 :320-333
[3]  
Engquist B., 1981, MATH COMP, V36, P321
[4]  
Espedal M.S., 2000, Filtration in Porous Media and Industrial Application, P9
[5]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[6]   HIGH-RE SOLUTIONS FOR INCOMPRESSIBLE-FLOW USING THE NAVIER STOKES EQUATIONS AND A MULTIGRID METHOD [J].
GHIA, U ;
GHIA, KN ;
SHIN, CT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 48 (03) :387-411
[7]  
Hackbusch W., 1985, SPRINGER SER COMPUT, V4
[8]   Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method [J].
Hasanov, Alemdar ;
Pektas, Burhan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (01) :42-57
[9]   A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method [J].
Huang, CH ;
Wang, SP .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (18) :3387-3403
[10]   A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method [J].
Huang, CH ;
Chen, WC .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (17) :3171-3181