Towards regulatory endorsement of drug development tools to promote the application of model-informed drug development in Duchenne muscular dystrophy

被引:19
作者
Conrado, Daniela J. [1 ]
Larkindale, Jane [1 ]
Berg, Alexander [1 ]
Hill, Micki [2 ]
Burton, Jackson [1 ]
Abrams, Keith R. [2 ]
Abresch, Richard T. [1 ]
Bronson, Abby [3 ]
Chapman, Douglass [4 ]
Crowther, Michael [2 ]
Duong, Tina [5 ]
Gordish-Dressman, Heather [6 ]
Harnisch, Lutz [4 ]
Henricson, Erik [7 ]
Kim, Sarah [8 ]
McDonald, Craig M. [7 ]
Schmidt, Stephan [8 ]
Vong, Camille [4 ]
Wang, Xiaoxing [4 ]
Wong, Brenda L. [9 ]
Yong, Florence [4 ]
Romero, Klaus [1 ]
机构
[1] Crit Path Inst, 1730 E River Rd, Tucson, AZ 85705 USA
[2] Univ Leicester, Leicester, Leics, England
[3] Parent Project Muscular Dystrophy, Hackensack, NJ USA
[4] Pfizer, Groton, CT USA
[5] Stanford Univ, Stanford, CA 94305 USA
[6] Childrens Natl Med Ctr, Washington, DC 20010 USA
[7] Univ Calif Davis, Davis, CA 95616 USA
[8] Univ Florida, Dept Pharmaceut, Ctr Pharmacometr & Syst Pharmacol, Orlando, FL USA
[9] Univ Massachusetts, Med Sch, Boston, MA 02125 USA
关键词
Rare diseases; Duchenne muscular dystrophy consortium (D-RSC); Model-informed drug development; Drug development tools; Regulatory endorsement; DISEASE PROGRESSION; HANDLING DATA; QUANTIFICATION; MORTALITY; THERAPY; DESIGN; LIMIT;
D O I
10.1007/s10928-019-09642-7
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Drug development for rare diseases is challenged by small populations and limited data. This makes development of clinical trial protocols difficult and contributes to the uncertainty around whether or not a potential therapy is efficacious. The use of data standards to aggregate data from multiple sources, and the use of such integrated databases to develop statistical models can inform protocol development and reduce the risks in developing new therapies. Achieving regulatory endorsement of such models through defined pathways at the US Food and Drug Administration and European Medicines Authority allows such tools to be used by the drug development community for defined contexts of use without further need for discussion of the underlying model(s). The Duchenne Regulatory Science Consortium (D-RSC) has brought together multiple stakeholders to develop a clinical trial simulation tool for Duchenne muscular dystrophy using such an approach. Here we describe the work of D-RSC as an example of how such an approach may be effective at reducing uncertainty in drug development for rare diseases, and thus bringing effective therapies to patients faster.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 32 条
  • [1] The importance of genetic diagnosis for Duchenne muscular dystrophy
    Aartsma-Rus, Annemieke
    Ginjaar, Ieke B.
    Bushby, Kate
    [J]. JOURNAL OF MEDICAL GENETICS, 2016, 53 (03) : 145 - 151
  • [2] Likelihood based approaches to handling data below the quantification limit using NONMEM VI
    Ahn, Jae Eun
    Karlsson, Mats O.
    Dunne, Adrian
    Ludden, Thomas M.
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2008, 35 (04) : 401 - 421
  • [3] [Anonymous], FAQS RAR DIS
  • [4] Longitudinal timed function tests in Duchenne muscular dystrophy: ImagingDMD cohort natural history
    Arora, Harneet
    Willcocks, Rebecca J.
    Lott, Donovan J.
    Harrington, Ann T.
    Senesac, Claudia R.
    Zilke, Kirsten L.
    Daniels, Michael J.
    Xu, Dandan
    Tennekoon, Gihan I.
    Finanger, Erika L.
    Russman, Barry S.
    Finkel, Richard S.
    Triplett, William T.
    Byrne, Barry J.
    Walter, Glenn A.
    Sweeney, H. Lee
    Vandenborne, Krista
    [J]. MUSCLE & NERVE, 2018, 58 (05) : 631 - 638
  • [5] DMD genotypes and loss of ambulation in the CINRG Duchenne Natural History Study
    Bello, Luca
    Morgenroth, Lauren P.
    Gordish-Dressman, Heather
    Hoffman, Eric P.
    McDonald, Craig M.
    Cirak, Sebahattin
    [J]. NEUROLOGY, 2016, 87 (04) : 401 - 409
  • [6] Handling Data Below the Limit of Quantification in Mixed Effect Models
    Bergstrand, Martin
    Karlsson, Mats O.
    [J]. AAPS JOURNAL, 2009, 11 (02): : 371 - 380
  • [7] Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management
    Bushby, Katharine
    Finkel, Richard
    Birnkrant, David J.
    Case, Laura E.
    Clemens, Paula R.
    Cripe, Linda
    Kaul, Ajay
    Kinnett, Kathi
    McDonald, Craig
    Pandya, Shree
    Poysky, James
    Shapiro, Frederic
    Tomezsko, Jean
    Constantin, Carolyn
    [J]. LANCET NEUROLOGY, 2010, 9 (01) : 77 - 93
  • [8] Open innovation: Towards sharing of data, models and workflows
    Conrado, Daniela J.
    Karlsson, Mats O.
    Romero, Klaus
    Sarr, Celine
    Wilkins, Justin J.
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2017, 109 : S65 - S71
  • [9] An updated Alzheimer's disease progression model: incorporating non-linearity, beta regression, and a third-level random effect in NONMEM
    Conrado, Daniela J.
    Denney, William S.
    Chen, Danny
    Ito, Kaori
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2014, 41 (06) : 581 - 598
  • [10] Drug Development Pipeline, PAR PROJ MUSC DYSTR