Rumor Detect: Detection of Rumors in Twitter Using Convolutional Deep Tweet Learning Approach

被引:0
|
作者
Amma, N. G. Bhuvaneswari [1 ]
Selvakumar, S. [1 ,2 ]
机构
[1] Natl Inst Technol, Tiruchirappalli 620015, Tamil Nadu, India
[2] Indian Inst Informat Technol, Una, Himachal Prades, India
来源
COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING | 2020年 / 1108卷
关键词
Convolutional neural network; Deep learning; Feature extraction; Rumor detection; Social media; Twitter; SPAM DETECTION; IDENTIFICATION;
D O I
10.1007/978-3-030-37218-7_48
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays social media is a common platform to exchange ideas, news, and opinions as the usage of social media sites is increasing exponentially. Twitter is one such micro-blogging site and most of the early update tweets are unverified at the time of posting leading to rumors. The spread of rumors in certain situations make the people panic. Therefore, early detection of rumors in Twitter is needed and recently deep learning approaches have been used for rumor detection. The lacuna in the existing rumor detection systems is the curse of dimensionality problem in the extracted features of Twitter tweets which leads to high detection time. In this paper, the issue of dimensionality is addressed and a solution is proposed to overcome the same. The detection time could be reduced if the relevant features are only considered for rumor detection. This is captured by the proposed approach which extracts the features based on tweet, reduces the dimension of tweet features using convolutional neural network, and learns using fully connected deep network. Experiments were conducted on events in Twitter PHEME dataset and it is evident that the proposed convolutional deep tweet learning approach yields promising results with less detection time compared to the conventional deep learning approach.
引用
收藏
页码:422 / 430
页数:9
相关论文
共 50 条
  • [21] Ensemble Deep Learning on Time-Series Representation of Tweets for Rumor Detection in Social Media
    Kotteti, Chandra Mouli Madhav
    Dong, Xishuang
    Qian, Lijun
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 21
  • [22] Rumor Detection on Time-Series of Tweets via Deep Learning
    Kotteti, Chandra Mouli Madhav
    Dong, Xishuang
    Qian, Lijun
    MILCOM 2019 - 2019 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2019,
  • [23] Influential Detection in Twitter Using Tweet Quality Analysis
    Mahalakshmi, G. S.
    Koquilamballe, K.
    Sendhilkumar, S.
    2017 SECOND INTERNATIONAL CONFERENCE ON RECENT TRENDS AND CHALLENGES IN COMPUTATIONAL MODELS (ICRTCCM), 2017, : 315 - 319
  • [24] Tweet Act Classification : A Deep Learning based Classifier for Recognizing Speech Acts in Twitter
    Saha, Tulika
    Saha, Sriparna
    Bhattacharyya, Pushpak
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [25] An evolutionary approach for depression detection from Twitter big data using a novel deep learning model with attention based feature learning mechanism
    Prabhakar, K.
    Kavitha, V
    AUTOMATIKA, 2024, 65 (02) : 441 - 453
  • [26] Twitter stance detection using deep learning model with FastText Embedding
    Deng, Yongqing
    Huang, Yongzhong
    2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 534 - 541
  • [27] Rumor Detection on Twitter using Extracted Patterns from Conversational Tree
    Yavary, Arefeh
    Sajedi, Hedieh
    2018 4TH INTERNATIONAL CONFERENCE ON WEB RESEARCH (ICWR), 2018, : 78 - 85
  • [28] Deep Learning for Depression Detection Using Twitter Data
    Khafaga, Doaa Sami
    Auvdaiappan, Maheshwari
    Deepa, K.
    Abouhawwash, Mohamed
    Karim, Faten Khalid
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (02) : 1301 - 1313
  • [29] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [30] Deep Learning-Based Rumor Detection on Microblogging Platforms: A Systematic Review
    Al-Sarem, Mohammed
    Boulila, Wadii
    Al-Harby, Muna
    Qadir, Junaid
    Alsaeedi, Abdullah
    IEEE ACCESS, 2019, 7 : 152788 - 152812