Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite

被引:88
|
作者
Prozorov, Ruslan [1 ]
Prozorov, Tanya
Mallapragada, Surya K.
Narasimhan, Balaji
Williams, Timothy J.
Bazylinski, Dennis A.
机构
[1] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
[5] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.76.054406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetic properties of biologically produced magnetite nanocrystals biomineralized by four different magnetotactic bacteria were compared to those of synthetic magnetite nanocrystals and large, high-quality single crystals. The magnetic feature at the Verwey temperature T-V was clearly seen in all nanocrystals, although its sharpness depended on the shape of individual nanoparticles and whether or not the particles were arranged in magnetosome chains. The transition was broader in the individual superparamagnetic nanoparticles for which T-B < T-V, where T-B is the superparamagnetic blocking temperature. For nanocrystals organized in chains, the effective blocking temperature T-B>T-V and the Verwey transition is sharply defined. No correlation between particle size and T-V was found. Furthermore, measurements of M(H,T,time) suggest that magnetosome chains behave as long magnetic dipoles where the local magnetic field is directed along the chain. This result confirms that time-logarithmic magnetic relaxation is due to the collective (dipolar) nature of the barrier for magnetic moment reorientation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] MOSSBAUER MEASUREMENTS OF MAGNETITE BELOW VERWEY TRANSITION
    HARGOVE, RS
    KUNDIG, W
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (08): : 837 - &
  • [32] Infrared and Raman studies of the Verwey transition in magnetite
    Gasparov, LV
    Tanner, DB
    Romero, DB
    Berger, H
    Margaritondo, G
    Forró, L
    PHYSICAL REVIEW B, 2000, 62 (12): : 7939 - 7944
  • [33] The influence of a finite bandwidth on the Verwey transition in magnetite
    Brabers, JHVJ
    Walz, F
    Kronmüller, H
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (25) : 5437 - 5452
  • [34] Mossbauer Study on the Verwey Transition in Niobium Magnetite
    Torres-Tapia, E. C.
    Landauro, C.
    Moreira, L. F.
    Domingues, P. H.
    Neto, J. M.
    do Amaral, M. R.
    MOSSBAUER SPECTROSCOPY IN MATERIALS SCIENCE 2008, 2008, 1070 : 91 - +
  • [35] Structural transformation in magnetite below the Verwey transition
    Blasco, Javier
    Garcia, Joaquin
    Subias, Gloria
    PHYSICAL REVIEW B, 2011, 83 (10)
  • [36] Impurity effects upon the Verwey transition in magnetite
    Brabers, VAM
    Walz, F
    Kronmuller, H
    PHYSICAL REVIEW B, 1998, 58 (21): : 14163 - 14166
  • [37] The role of volume effects in the Verwey transition in magnetite
    Brabers, JHVJ
    Walz, F
    Kronmuller, H
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (18) : 3679 - 3686
  • [38] Phase separation in the nonequilibrium Verwey transition in magnetite
    Randi, F.
    Vergara, I.
    Novelli, F.
    Esposito, M.
    Dell'Angela, M.
    Brabers, V. A. M.
    Metcalf, P.
    Kukreja, R.
    Duerr, H. A.
    Fausti, D.
    Grueninger, M.
    Parmigiani, F.
    PHYSICAL REVIEW B, 2016, 93 (05)
  • [39] Observation of the Verwey transition in thin magnetite films
    1600, American Institute of Physics Inc. (97):
  • [40] Effect of Uniaxial Strain on Verwey Transition in Magnetite
    Nagasawa, Yasuo
    Kosaka, Masashi
    Katano, Susumu
    Mori, Nobuo
    Todo, Sakae
    Uwatoko, Yoshiya
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 : 110 - 111