Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite

被引:88
|
作者
Prozorov, Ruslan [1 ]
Prozorov, Tanya
Mallapragada, Surya K.
Narasimhan, Balaji
Williams, Timothy J.
Bazylinski, Dennis A.
机构
[1] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
[5] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.76.054406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetic properties of biologically produced magnetite nanocrystals biomineralized by four different magnetotactic bacteria were compared to those of synthetic magnetite nanocrystals and large, high-quality single crystals. The magnetic feature at the Verwey temperature T-V was clearly seen in all nanocrystals, although its sharpness depended on the shape of individual nanoparticles and whether or not the particles were arranged in magnetosome chains. The transition was broader in the individual superparamagnetic nanoparticles for which T-B < T-V, where T-B is the superparamagnetic blocking temperature. For nanocrystals organized in chains, the effective blocking temperature T-B>T-V and the Verwey transition is sharply defined. No correlation between particle size and T-V was found. Furthermore, measurements of M(H,T,time) suggest that magnetosome chains behave as long magnetic dipoles where the local magnetic field is directed along the chain. This result confirms that time-logarithmic magnetic relaxation is due to the collective (dipolar) nature of the barrier for magnetic moment reorientation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Terahertz conductivity at the Verwey transition in magnetite
    Pimenov, A
    Tachos, S
    Rudolf, T
    Loidl, A
    Schrupp, D
    Sing, M
    Claessen, R
    Brabers, VAM
    PHYSICAL REVIEW B, 2005, 72 (03)
  • [22] PAC measurements of the Verwey transition in magnetite
    Z. Inglot
    K.P. Lieb
    M. Uhrmacher
    D. Wiarda
    L. Ziegeler
    Hyperfine Interactions, 1999, 120-121 : 237 - 241
  • [23] Magnetic properties of magnetite above the Verwey transition: a Monte Carlo simulation
    Mazo-Zuluaga, J
    Restrepo, J
    Physica Status Solidi C - Conference and Critical Reviews, Vol 2, No 10, 2005, 2 (10): : 3540 - 3543
  • [24] THE EFFECT OF OXIDATION ON THE VERWEY TRANSITION IN MAGNETITE
    OZDEMIR, O
    DUNLOP, DJ
    MOSKOWITZ, BM
    GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (16) : 1671 - 1674
  • [25] ON THE CONDUCTIVITY OF MAGNETITE BELOW THE VERWEY TRANSITION
    MCKINNON, WR
    HURD, CM
    SHIOZAKI, I
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (29): : L877 - L880
  • [26] Magnetic hysteresis of pseudosingle-domain and multidomain magnetite below Verwey transition
    Kosterov, A
    GEOLOGICA CARPATHICA, 2000, 51 (03) : 187 - 188
  • [27] Verwey transition temperature distribution in magnetic nanocomposites containing polydisperse magnetite nanoparticles
    G. Barrera
    P. Tiberto
    C. Sciancalepore
    M. Messori
    F. Bondioli
    P. Allia
    Journal of Materials Science, 2019, 54 : 8346 - 8360
  • [28] Microscopic States and the Verwey Transition of Magnetite Nanocrystals Investigated by Nuclear Magnetic Resonance
    Lim, Sumin
    Choi, Baeksoon
    Lee, Sang Young
    Lee, Soonchil
    Ho-Hyun Nahm
    Kim, Yong-Hyun
    Kim, Taehun
    Park, Je-Geun
    Lee, Jisoo
    Hong, Jaeyoung
    Kwon, Soon Gu
    Hyeon, Taeghwan
    NANO LETTERS, 2018, 18 (03) : 1745 - 1750
  • [29] Verwey transition temperature distribution in magnetic nanocomposites containing polydisperse magnetite nanoparticles
    Barrera, G.
    Tiberto, P.
    Sciancalepore, C.
    Messori, M.
    Bondioli, F.
    Allia, P.
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (11) : 8346 - 8360
  • [30] ELECTRICAL TRANSPORT IN MAGNETITE NEAR THE VERWEY TRANSITION
    KUIPERS, AJM
    BRABERS, VAM
    PHYSICAL REVIEW B, 1979, 20 (02): : 594 - 600