Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite

被引:88
|
作者
Prozorov, Ruslan [1 ]
Prozorov, Tanya
Mallapragada, Surya K.
Narasimhan, Balaji
Williams, Timothy J.
Bazylinski, Dennis A.
机构
[1] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
[5] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.76.054406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetic properties of biologically produced magnetite nanocrystals biomineralized by four different magnetotactic bacteria were compared to those of synthetic magnetite nanocrystals and large, high-quality single crystals. The magnetic feature at the Verwey temperature T-V was clearly seen in all nanocrystals, although its sharpness depended on the shape of individual nanoparticles and whether or not the particles were arranged in magnetosome chains. The transition was broader in the individual superparamagnetic nanoparticles for which T-B < T-V, where T-B is the superparamagnetic blocking temperature. For nanocrystals organized in chains, the effective blocking temperature T-B>T-V and the Verwey transition is sharply defined. No correlation between particle size and T-V was found. Furthermore, measurements of M(H,T,time) suggest that magnetosome chains behave as long magnetic dipoles where the local magnetic field is directed along the chain. This result confirms that time-logarithmic magnetic relaxation is due to the collective (dipolar) nature of the barrier for magnetic moment reorientation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Magnetic and structural studies of magnetite at the Verwey transition
    Tabis, W.
    Tarnawski, Z.
    Kakol, Z.
    Krol, G.
    Kolodziejczyk, A.
    Kozlowski, A.
    Fluerasu, A.
    Honig, J. M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 442 (1-2) : 203 - 205
  • [2] VERWEY TRANSITION IN MAGNETITE
    LORENZ, B
    IHLE, D
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1972, 54 (02): : 463 - 467
  • [3] Mechanism of the Verwey transition in magnetite
    Piekarz, Przemyslaw
    Parlinski, Krzysztof
    Oles, Andrzej M.
    PHYSICAL REVIEW LETTERS, 2006, 97 (15)
  • [4] Origin of the verwey transition in magnetite
    Rozenberg, GK
    Pasternak, MP
    Xu, WM
    Amiel, Y
    Hanfland, M
    Amboage, M
    Taylor, RD
    Jeanloz, R
    PHYSICAL REVIEW LETTERS, 2006, 96 (04)
  • [5] Surface verwey transition in magnetite
    Lodziana, Zbigniew
    PHYSICAL REVIEW LETTERS, 2007, 99 (20)
  • [6] ANALYSIS OF THE VERWEY TRANSITION IN MAGNETITE
    HONIG, JM
    JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 229 (01) : 24 - 39
  • [7] Aspects of the Verwey transition in magnetite
    Seo, H
    Ogata, M
    Fukuyama, H
    PHYSICAL REVIEW B, 2002, 65 (08) : 1 - 9
  • [8] Studies of the Verwey transition in magnetite
    Tarnawski, Z
    Wiechec, A
    Madej, M
    Nowak, D
    Owoc, D
    Król, G
    Kakol, Z
    Kolwicz-Chodak, L
    Kozlowski, A
    Dawid, T
    ACTA PHYSICA POLONICA A, 2004, 106 (05) : 771 - 775
  • [9] Magnetic properties of magnetite thin films close to the Verwey transition
    Bohra, Murtaza
    Prasad, Shiva
    Venketaramani, N.
    Kumar, Naresh
    Sahoo, S. C.
    Krishnan, R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (22) : 3738 - 3741
  • [10] MAGNETIC AND TRANSPORT-PROPERTIES OF MAGNETITE IN THE VICINITY OF THE VERWEY TRANSITION
    KAKOL, Z
    JOURNAL OF SOLID STATE CHEMISTRY, 1990, 88 (01) : 104 - 114