Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite

被引:89
作者
Prozorov, Ruslan [1 ]
Prozorov, Tanya
Mallapragada, Surya K.
Narasimhan, Balaji
Williams, Timothy J.
Bazylinski, Dennis A.
机构
[1] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
[5] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.76.054406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetic properties of biologically produced magnetite nanocrystals biomineralized by four different magnetotactic bacteria were compared to those of synthetic magnetite nanocrystals and large, high-quality single crystals. The magnetic feature at the Verwey temperature T-V was clearly seen in all nanocrystals, although its sharpness depended on the shape of individual nanoparticles and whether or not the particles were arranged in magnetosome chains. The transition was broader in the individual superparamagnetic nanoparticles for which T-B < T-V, where T-B is the superparamagnetic blocking temperature. For nanocrystals organized in chains, the effective blocking temperature T-B>T-V and the Verwey transition is sharply defined. No correlation between particle size and T-V was found. Furthermore, measurements of M(H,T,time) suggest that magnetosome chains behave as long magnetic dipoles where the local magnetic field is directed along the chain. This result confirms that time-logarithmic magnetic relaxation is due to the collective (dipolar) nature of the barrier for magnetic moment reorientation.
引用
收藏
页数:10
相关论文
共 46 条
  • [1] Aharoni A, 2001, Introduction to the Theory of Ferromagnetism
  • [2] Interparticle interactions and surface contribution to the effective anisotropy in biocompatible iron oxide nanoparticles used for contrast agents
    Arelaro, AD
    Brandl, AL
    Lima, E
    Gamarra, LF
    Brito, GES
    Pontuschka, WM
    Goya, GF
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [3] Magnetosome formation in prokaryotes
    Bazylinski, DA
    Frankel, RB
    [J]. NATURE REVIEWS MICROBIOLOGY, 2004, 2 (03) : 217 - 230
  • [4] ANAEROBIC MAGNETITE PRODUCTION BY A MARINE, MAGNETOTACTIC BACTERIUM
    BAZYLINSKI, DA
    FRANKEL, RB
    JANNASCH, HW
    [J]. NATURE, 1988, 334 (6182) : 518 - 519
  • [5] MAGNETOTACTIC BACTERIA
    BLAKEMORE, R
    [J]. SCIENCE, 1975, 190 (4212) : 377 - 379
  • [6] ISOLATION AND PURE CULTURE OF A FRESHWATER MAGNETIC SPIRILLUM IN CHEMICALLY DEFINED MEDIUM
    BLAKEMORE, RP
    MARATEA, D
    WOLFE, RS
    [J]. JOURNAL OF BACTERIOLOGY, 1979, 140 (02) : 720 - 729
  • [7] Preparation of amorphous Fe2O3 powder with different particle sizes
    Cao, X
    Koltypin, Y
    Prozorov, R
    Kataby, G
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 1997, 7 (12) : 2447 - 2451
  • [8] Synthesis of pure amorphous Fe2O3
    Cao, X
    Prozorov, R
    Koltypin, Y
    Kataby, G
    Felner, I
    Gedanken, A
    [J]. JOURNAL OF MATERIALS RESEARCH, 1997, 12 (02) : 402 - 406
  • [9] Preparation and characterization of amorphous nanometre sized Fe3O4 powder
    Cao, X
    Koltypin, Y
    Katabi, G
    Prozorov, R
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 1997, 7 (06) : 1007 - 1009
  • [10] Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1
    Dubbels, BL
    DiSpirito, AA
    Morton, JD
    Semrau, JD
    Neto, JNE
    Bazylinski, DA
    [J]. MICROBIOLOGY-SGM, 2004, 150 : 2931 - 2945