The presence and lack of Fermi acceleration in nonintegrable billiards

被引:31
作者
Kamphorst, S. Oliffson
Leonel, E. D.
da Silva, J. K. L.
机构
[1] Univ Fed Minas Gerais, ICEx, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Estadual Paulista, IGCE, Dept Estatist Matemat Aplicada & Computacao, BR-13506900 Rio Claros, SP, Brazil
[3] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
关键词
D O I
10.1088/1751-8113/40/37/F02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The unlimited energy growth ( Fermi acceleration) of a classical particle moving in a billiard with a parameter-dependent boundary oscillating in time is numerically studied. The shape of the boundary is controlled by a parameter and the billiard can change from a focusing one to a billiard with dispersing pieces of the boundary. The complete and simplified versions of the model are considered in the investigation of the conjecture that Fermi acceleration will appear in the time-dependent case when the dynamics is chaotic for the static boundary. Although this conjecture holds for the simplified version, we have not found evidence of Fermi acceleration for the complete model with a breathing boundary. When the breathing symmetry is broken, Fermi acceleration appears in the complete model.
引用
收藏
页码:F887 / F893
页数:7
相关论文
共 26 条
  • [1] PARTICLE-ACCELERATION AT ASTROPHYSICAL SHOCKS - A THEORY OF COSMIC-RAY ORIGIN
    BLANDFORD, R
    EICHLER, D
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 154 (01): : 1 - 75
  • [2] Fermi acceleration on the annular billiard
    Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociěncias e Ciěncias Exatas, UNESP, Avenida 24A, 1515-Bela Vista, 13506-700, Rio Claro, Sao Paulo, Brazil
    [J]. Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 2006, 6
  • [3] Fermi acceleration on the annular billiard: a simplified version
    de Carvalho, RE
    de Souza, FC
    Leonel, ED
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3561 - 3573
  • [4] DOUADY R, 1982, THESE 3EME CYCLE
  • [5] Fermi E., 1949, Phys. Rev, V75, P1169, DOI [10.1103/PhysRev.75.1169, DOI 10.1103/PHYSREV.75.1169]
  • [6] Hammersley J. M., 1961, P 4 BERK S MATH STAT, V3, P79
  • [7] Bounded gain of energy on the breathing circle billiard
    Kamphorst, SO
    de Carvalho, SP
    [J]. NONLINEARITY, 1999, 12 (05) : 1363 - 1371
  • [8] Hyperacceleration in a stochastic fermi-ulam model
    Karlis, A. K.
    Papachristou, P. K.
    Diakonos, F. K.
    Constantoudis, V.
    Schmelcher, P.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (19)
  • [9] Static and time-dependent perturbations of the classical elliptical billiard
    Koiller, J
    Markarian, R
    Kamphorst, SO
    deCarvalho, SP
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) : 127 - 143
  • [10] TIME-DEPENDENT BILLIARDS
    KOILLER, J
    MARKARIAN, R
    KAMPHORST, SO
    DECARVALHO, SP
    [J]. NONLINEARITY, 1995, 8 (06) : 983 - 1003