On multicolor Ramsey numbers for even cycles in graphs

被引:0
|
作者
Sun Yongqi [1 ]
Yang Yuansheng
Jiang Baoqi
Lin Xiaohui
Lei, Shi
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
关键词
multicolor Ramsey number; cycle; Galois field; latin square;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multicolor Ramsey number R-r(H) is defined to be the smallest integer n = n(r) with the property that any r-coloring of the edges of complete graph K-n must result in a monochromatic subgraph of K-n isomorphic to H. In this paper, we study the case that H is a cycle of length 2k. If 2k >= r + 1 and r is a prime power, we show that R-r(C-2k) > r(2) + 2k - r - 1.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 50 条
  • [1] Multicolor Ramsey Numbers of Bipartite Graphs and Large Books
    Li, Yan
    Li, Yusheng
    Wang, Ye
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [2] The multicolor size-Ramsey numbers of cycles
    Javadi, R.
    Miralaei, M.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 264 - 285
  • [3] Multicolor bipartite Ramsey numbers for paths, cycles, and stripes
    Rowshan, Yaser
    Gholami, Mostafa
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [4] Multicolor bipartite Ramsey numbers for paths, cycles, and stripes
    Yaser Rowshan
    Mostafa Gholami
    Computational and Applied Mathematics, 2023, 42
  • [5] Multicolor Ramsey Numbers of Bipartite Graphs and Large Books
    Yan Li
    Yusheng Li
    Ye Wang
    Graphs and Combinatorics, 2023, 39
  • [6] Anti-Ramsey numbers for cycles in the generalized Petersen graphs
    Liu, Huiqing
    Lu, Mei
    Zhang, Shunzhe
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [7] Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs
    Ming Chen
    Yusheng Li
    Chaoping Pei
    Graphs and Combinatorics, 2018, 34 : 1185 - 1196
  • [8] Some multicolor bipartite Ramsey numbers involving cycles and a small number of colors
    Hattingh, Johannes H.
    Joubert, Ernst J.
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1325 - 1330
  • [9] The ratio of the numbers of odd and even cycles in outerplanar graphs
    Higashitani, Akihiro
    Matsumoto, Naoki
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [10] Bounds for two multicolor Ramsey numbers concerning quadrilaterals
    Zhang, Xuemei
    Chen, Yaojun
    Cheng, T. C. Edwin
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 79