Steady state analysis of multitone nonlinear periodic circuits in wavelet domain

被引:0
作者
Soveiko, N [1 ]
Nakhla, M [1 ]
机构
[1] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
来源
2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3 | 2003年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method for steady state analysis of nonlinear periodic circuits is proposed. The new method is similar to the well known technique of Harmonic Balance, but uses wavelets as basis functions instead of Fourier series. Because of the increased sparsity of the Jacobian matrix, the new method scales linearly with the size of the problem and is well suited for large scale simulations.
引用
收藏
页码:2121 / 2124
页数:4
相关论文
共 9 条
[1]   ON THE REPRESENTATION OF OPERATORS IN BASES OF COMPACTLY SUPPORTED WAVELETS [J].
BEYLKIN, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (06) :1716-1740
[2]  
Daubechies I., 1992, 10 LECT WAVELETS
[3]  
Golub G. H., 2013, Matrix Computations
[4]  
Kundert K.S., 1990, Steady-State Methods for Simulating Analog and Microwave Circuits
[5]   PIECEWISE HARMONIC BALANCE TECHNIQUE FOR DETERMINATION OF PERIODIC RESPONSE OF NONLINEAR-SYSTEMS [J].
NAKHLA, MS ;
VLACH, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1976, 23 (02) :85-91
[6]  
Nievergelt Yves., 1999, WAVELETS MADE EASY
[7]  
Restrepo JM, 1997, INT J NUMER METH ENG, V40, P3557, DOI 10.1002/(SICI)1097-0207(19971015)40:19<3557::AID-NME227>3.0.CO
[8]  
2-A
[9]  
Rodrigues PJC., 1998, COMPUTER AIDED ANAL