Molybdenum chalcogenides based anode materials for alkali metal ions batteries: Beyond lithium ion batteries

被引:95
作者
Zhou, Yanli [1 ]
Han, Qi [1 ]
Liu, Yan [1 ]
Wang, Yifei [1 ]
Jiang, Fuyi [1 ]
Wang, Nana [2 ]
Bai, Zhongchao [3 ]
Dou, Shixue [2 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Univ Wollongong Innovat Campus, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, North Wollongong, NSW 2500, Australia
[3] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Shandong, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Molybdenum chalcogenides; Na+/K+ ions batteries; Electrode structure design; Reaction mechanism; Electrolyte optimization; FEW-LAYER MOS2; EXPANDED; 002; PLANES; SODIUM STORAGE; ENERGY-STORAGE; RATIONAL DESIGN; GRAPHENE OXIDE; LONG-LIFE; ELECTRODE MATERIALS; ASSISTED SYNTHESIS; CARBON COMPOSITE;
D O I
10.1016/j.ensm.2022.05.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium and potassium ions batteries (SIBs, PIBs) as the ideal substitutes for lithium ion batteries (LIBs) applied in large-scale energy storage have attracted wide concerns due to the same work principle of LIBs, rich abundance, and low-cost features. However, the key challenge in the Na+/K+ storage field is the shortage of suitable anode materials because the common anode for LIBs, graphite, cannot effectively accommodate Na+ and K+. Molybdenum chalcogenides as anode materials for SIBs/PIBs have triggered great attention due to their special electronic/crystal structures and high specific capacities. However, their huge volumetric fluctuation upon repeated cycles will lead to serious capacity loss, and the low electrical conductivity will restrict the rate capability. In this review, the latest progress for various molybdenum chalcogenides in SIBs/PIBs including electrode structure design, reaction mechanism, and electrolyte optimization have been summarized in detail for performance promotion. Meanwhile, the existing challenges and future perspectives are proposed to provide favorable guidance for their further applications as next-generation rechargeable batteries.
引用
收藏
页码:308 / 333
页数:26
相关论文
共 209 条
[11]   Sandwich-like MoS2@SnO2@C with High Capacity and Stability for Sodium/Potassium Ion Batteries [J].
Chen, Zhi ;
Yin, Dangui ;
Zhang, Ming .
SMALL, 2018, 14 (17)
[12]   Few-layer MoS2 embedded in N-doped carbon fibers with interconnected macropores for ultrafast sodium storage [J].
Cheng, Ao ;
Zhang, Haiyan ;
Zhong, Weihao ;
Li, Zhaopeng ;
Cheng, Dejian ;
Lin, Yingxi ;
Tang, Yudie ;
Shao, Huaiyu ;
Li, Zhenghui .
CARBON, 2020, 168 :691-700
[13]   A spray-freezing approach to reduced graphene oxide/MoS2 hybrids for superior energy storage [J].
Cheng, Tao ;
Xu, Jin ;
Tan, Ziqi ;
Ye, Jianglin ;
Tao, Zhuchen ;
Du, Zhenzhen ;
Wu, Ying ;
Wu, Shuilin ;
Ji, Hengxing ;
Yu, Yan ;
Zhu, Yanwu .
ENERGY STORAGE MATERIALS, 2018, 10 :282-290
[14]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[15]   Carbon/two-dimensional MoTe2 core/shell-structured microspheres as an anode material for Na-ion batteries [J].
Cho, Jung Sang ;
Ju, Hyeon Seok ;
Lee, Jung-Kul ;
Kang, Yun Chan .
NANOSCALE, 2017, 9 (05) :1942-1950
[16]   Expanded MoSe2 Nanosheets Vertically Bonded on Reduced Graphene Oxide for Sodium and Potassium-Ion Storage [J].
Chong, Shaokun ;
Wei, Xuedong ;
Wu, Yifang ;
Sun, Lan ;
Shu, Chengyong ;
Lu, Qianbo ;
Hu, Yingzhen ;
Cao, Guozhong ;
Huang, Wei .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (11) :13158-13169
[17]   Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage [J].
Chong, Shaokun ;
Sun, Lan ;
Shu, Chengyong ;
Guo, Shengwu ;
Liu, Yongning ;
Wang, Wei ;
Liu, Hua Kun .
NANO ENERGY, 2019, 63
[18]   The energy-storage revolution [J].
Crabtree, George .
NATURE, 2015, 526 (7575) :S92-S92
[19]   Controlled Design of Well-Dispersed Ultrathin MoS2 Nanosheets inside Hollow Carbon Skeleton: Toward Fast Potassium Storage by Constructing Spacious "Houses" for K Ions [J].
Cui, Yongpeng ;
Liu, Wei ;
Feng, Wenting ;
Zhang, Yuan ;
Du, Yongxu ;
Liu, Shuang ;
Wang, Huanlei ;
Chen, Ming ;
Zhou, Junan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (10)
[20]   A Series of Molecule-Intercalated MoS2 as Anode Materials for Sodium Ion Batteries [J].
Dai, Hongmei ;
Tang, Mi ;
Huang, Jiming ;
Wang, Zhengbang .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (09) :10870-10877