Molybdenum chalcogenides based anode materials for alkali metal ions batteries: Beyond lithium ion batteries

被引:95
作者
Zhou, Yanli [1 ]
Han, Qi [1 ]
Liu, Yan [1 ]
Wang, Yifei [1 ]
Jiang, Fuyi [1 ]
Wang, Nana [2 ]
Bai, Zhongchao [3 ]
Dou, Shixue [2 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Univ Wollongong Innovat Campus, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, North Wollongong, NSW 2500, Australia
[3] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Shandong, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Molybdenum chalcogenides; Na+/K+ ions batteries; Electrode structure design; Reaction mechanism; Electrolyte optimization; FEW-LAYER MOS2; EXPANDED; 002; PLANES; SODIUM STORAGE; ENERGY-STORAGE; RATIONAL DESIGN; GRAPHENE OXIDE; LONG-LIFE; ELECTRODE MATERIALS; ASSISTED SYNTHESIS; CARBON COMPOSITE;
D O I
10.1016/j.ensm.2022.05.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium and potassium ions batteries (SIBs, PIBs) as the ideal substitutes for lithium ion batteries (LIBs) applied in large-scale energy storage have attracted wide concerns due to the same work principle of LIBs, rich abundance, and low-cost features. However, the key challenge in the Na+/K+ storage field is the shortage of suitable anode materials because the common anode for LIBs, graphite, cannot effectively accommodate Na+ and K+. Molybdenum chalcogenides as anode materials for SIBs/PIBs have triggered great attention due to their special electronic/crystal structures and high specific capacities. However, their huge volumetric fluctuation upon repeated cycles will lead to serious capacity loss, and the low electrical conductivity will restrict the rate capability. In this review, the latest progress for various molybdenum chalcogenides in SIBs/PIBs including electrode structure design, reaction mechanism, and electrolyte optimization have been summarized in detail for performance promotion. Meanwhile, the existing challenges and future perspectives are proposed to provide favorable guidance for their further applications as next-generation rechargeable batteries.
引用
收藏
页码:308 / 333
页数:26
相关论文
共 209 条
[1]   First-Principles Characterization of Potassium Intercalation in Hexagonal 2H-MoS2 [J].
Andersen, Amity ;
Kathmann, Shawn M. ;
Lilga, Michael A. ;
Abrecht, Karl O. ;
Hallen, Richard T. ;
Mei, Donghai .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (02) :1826-1832
[2]   Nature-Inspired, Graphene-Wrapped 3D MoS2 Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries [J].
Anwer, Shoaib ;
Huang, Yongxin ;
Li, Baosong ;
Govindan, Bharath ;
Liao, Kin ;
Cantwell, Wesley J. ;
Wu, Feng ;
Chen, Renjie ;
Zheng, Lianxi .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (25) :22323-22331
[3]   Concentration Effect of Fluoroethylene Carbonate on the Formation of Solid Electrolyte Interphase Layer in Sodium-Ion Batteries [J].
Bouibes, Amine ;
Takenaka, Norio ;
Fujie, Takuya ;
Kubota, Kei ;
Komaba, Shinichi ;
Nagaoka, Masataka .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (34) :28525-28532
[4]   Hierarchical chrysanthemum-like MoS2/Sb heterostructure encapsulated into N-doped graphene framework for superior potassium-ion storage [J].
Cao, Liang ;
Zhang, Bao ;
Xia, Haifeng ;
Wang, Chunhui ;
Luo, Bi ;
Fan, Xinming ;
Zhang, Jiafeng ;
Ou, Xing .
CHEMICAL ENGINEERING JOURNAL, 2020, 387
[5]   Heterointerface Engineering of Hierarchical Bi2S3/MoS2 with Self-Generated Rich Phase Boundaries for Superior Sodium Storage Performance [J].
Cao, Liang ;
Liang, Xinghui ;
Ou, Xing ;
Yang, Xianfeng ;
Li, Yangzhong ;
Yang, Chenghao ;
Lin, Zhang ;
Liu, Meilin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (16)
[6]   Doubling the cyclic stability of 3D hierarchically structured composites of 1T-MoS2/polyaniline/graphene through the formation of LiF-rich solid electrolyte interphase [J].
Chan, Yi-Ju ;
Vedhanarayanan, Balaraman ;
Ji, Xiaobo ;
Lin, Tsung-Wu .
APPLIED SURFACE SCIENCE, 2021, 565
[7]   NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density [J].
Chen, Fangshuai ;
Cui, Xiaoya ;
Liu, Chang ;
Cui, Baihua ;
Dou, Shuming ;
Xu, Jie ;
Liu, Siliang ;
Zhang, Hong ;
Deng, Yida ;
Chen, Yanan ;
Hu, Wenbin .
SCIENCE CHINA-MATERIALS, 2021, 64 (04) :852-860
[8]   Novel Designed MnS-MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering [J].
Chen, Fuzhou ;
Shi, Dong ;
Yang, Mingzhi ;
Jiang, Hehe ;
Shao, Yongliang ;
Wang, Shouzhi ;
Zhang, Baoguo ;
Shen, Jianxing ;
Wu, Yongzhong ;
Hao, Xiaopeng .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (06)
[9]   Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications [J].
Chen, Jing ;
Pan, Anqiang ;
Wang, Yaping ;
Cao, Xinxin ;
Zhang, Wenchao ;
Kong, Xiangzhong ;
Su, Qiong ;
Lin, Jiande ;
Cao, Guozhong ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2019, 21 :97-106
[10]   Boosting Sodium Storage of Fe1-xS/MoS2 Composite via Heterointerface Engineering [J].
Chen, Song ;
Huang, Shaozhuan ;
Hu, Junping ;
Fan, Shuang ;
Shang, Yang ;
Pam, Mei Er ;
Li, Xiaoxia ;
Wang, Ye ;
Xu, Tingling ;
Shi, Yumeng ;
Yang, Hui Ying .
NANO-MICRO LETTERS, 2019, 11 (01)