Heuristic rejection in interval global optimization

被引:9
作者
Casado, LG [1 ]
García, I
Csendes, T
Ruíz, VG
机构
[1] Univ Almeria, Dept Computer Architecture & Elect, Almeria, Spain
[2] Univ Szeged, Inst Informat, Szeged, Hungary
关键词
interval method; global optimization; branch-and-bound algorithms;
D O I
10.1023/A:1024731306785
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Based on the investigation carried out in Ref. 1, this paper incorporates new studies about the properties of inclusion functions on subintervals while a branch-and-bound algorithm is solving global optimization problems. It is found that the relative place of the global minimum value within the inclusion function value of the objective function at the current interval indicates mostly whether the given interval is close to a minimizer point. This information is used in a heuristic interval rejection rule that can save a considerable amount of computation. Illustrative examples are discussed and an extended numerical study shows the advantages of the new approach.
引用
收藏
页码:27 / 43
页数:17
相关论文
共 15 条
[1]   New results on verified global optimization [J].
Berner, S .
COMPUTING, 1996, 57 (04) :323-343
[2]  
Casado L. G., 1998, Proceedings of the 16th IASTED International Conference. Applied Informatics, P321
[3]   A heuristic rejection criterion in interval global optimization algorithms [J].
Casado, LG ;
García, I ;
Csendes, T .
BIT, 2001, 41 (04) :683-692
[4]   Experiments with a new selection criterion in a fast interval optimization algorithm [J].
Casado, LG ;
Martínez, JA ;
García, I .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (03) :247-264
[5]   A new multisection technique in interval methods for global optimization [J].
Casado, LG ;
García, I ;
Csendes, T .
COMPUTING, 2000, 65 (03) :263-269
[6]   Subdivision direction selection in interval methods for global optimization [J].
Csendes, T ;
Ratz, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :922-938
[7]  
HAMMER R, 1995, C PLUS PLUS TOOLBOX, V1
[8]  
Hansen E., 1992, PURE APPL MATH, V165
[9]  
Horst R., 1995, Handbook of global optimization: Nonconvex Optimization and Its Applications, V2
[10]   INTERVAL ARITHMETIC METHOD FOR GLOBAL OPTIMIZATION [J].
ICHIDA, K ;
FUJII, Y .
COMPUTING, 1979, 23 (01) :85-97