Large eddy simulation of swirling particle-laden flow in a model axisymmetric combustor

被引:40
作者
Efelein, Joseph C. [1 ]
Sankaran, Vaidyanathan [1 ]
Drozda, Tomasz G. [1 ]
机构
[1] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA
关键词
LES; spray modeling; swirling particle-laden flow;
D O I
10.1016/j.proci.2006.08.017
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper focuses on the application of the large eddy simulation (LES) technique to a swirling particle-laden flow in a model combustion chamber. A series of calculations have been performed and compared directly with detailed experimental measurements. The computational domain identically matches the laboratory configuration, which effectively isolates effects related to dilute particle dispersion and momentum coupling. Results highlight the predictive capabilities of LES when implemented with the appropriate numerics, grid resolution (as dictated by the class of models employed) and well-defined boundary conditions. The case study provides a clearer understanding of the effectiveness and feasibility of current state-of-the-art models and a quantitative understanding of relevant modeling issues by analyzing the characteristic parameters and scales of importance. The novel feature of the results presented is that they establish a baseline level of confidence in our ability to simulate complex flows at conditions representative of those typically observed in gas-turbine (and similar) combustors. (C) 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:2291 / 2299
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 1978, BUBBLES DROPS PARTIC
[2]   Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor [J].
Apte, SV ;
Mahesh, K ;
Moin, P ;
Oefelein, JC .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (08) :1311-1331
[3]  
BENSON MJ, 2003, TSD150 STANF U DEP M
[4]   PREFERENTIAL CONCENTRATION OF PARTICLES BY TURBULENCE [J].
EATON, JK ;
FESSLER, JR .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1994, 20 :169-209
[5]   On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence [J].
Ferrante, A ;
Elghobashi, S .
PHYSICS OF FLUIDS, 2003, 15 (02) :315-329
[6]   PARTICLE RESPONSE AND TURBULENCE MODIFICATION IN FULLY-DEVELOPED CHANNEL FLOW [J].
KULICK, JD ;
FESSLER, JR ;
EATON, JK .
JOURNAL OF FLUID MECHANICS, 1994, 277 :109-134
[7]   Localized force representations for particles sedimenting in Stokes flow [J].
Maxey, MR ;
Patel, BK .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2001, 27 (09) :1603-1626
[8]  
OEFELEIN JC, 1999, P 12 ANN C LIQ AT SP, P143
[9]  
OEFELEIN JC, 1995, SIMULATION HIGH PRES, V171, P263
[10]  
OEFELEIN JC, 1997, THESIS PENNSYLVANIA