LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW ON THE d-DIMENSIONAL TORUS

被引:20
作者
Bernier, Joackim [1 ]
Faou, Erwan [2 ]
Grebert, Benoit [3 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, UMR5219, Univ Toulouse,CNRS, F-31062 Toulouse 9, France
[2] Univ Rennes, CNRS, IRMAR, INRIA,UMR 6625, F-35000 Rennes, France
[3] Univ Nantes, Lab Math Jean Leray, UMR CNRS 6629, 2 Rue Houssiniere, F-44322 Nantes 03, France
关键词
KLEIN-GORDON EQUATIONS; NONLINEAR SCHRODINGER-EQUATION; BIRKHOFF NORMAL-FORM; SMALL CAUCHY DATA; LINEAR SCHRODINGER; PERIODIC-SOLUTIONS; EXISTENCE; CONSTRUCTION; ENERGY;
D O I
10.1017/fms.2020.8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear wave equation (NLW) on the d-dimensional torus T-d with a smooth nonlinearity of order at least 2 at the origin. We prove that, for almost any mass, small and smooth solutions of high Sobolev indices are stable up to arbitrary long times with respect to the size of the initial data. To prove this result, we use a normal form transformation decomposing the dynamics into low and high frequencies with weak interactions. While the low part of the dynamics can be put under classical Birkhoff normal form, the high modes evolve according to a time-dependent linear Hamiltonian system. We then control the global dynamics by using polynomial growth estimates for high modes and the preservation of Sobolev norms for the low modes. Our general strategy applies to any semilinear Hamiltonian Partial Differential Equations (PDEs) whose linear frequencies satisfy a very general nonresonance condition. The (NLW) equation on T-d is a good example since the standard Birkhoff normal form applies only when d=1 while our strategy applies in any dimension.
引用
收藏
页数:26
相关论文
共 35 条
[1]  
[Anonymous], 1965, Doklady
[2]  
[Anonymous], 2003, Courant Lecture Notes
[3]  
[Anonymous], 1993, LECT NOTES MATH
[4]  
[Anonymous], 1968, SOV MATH DOKL
[5]   A Birkhoff normal form theorem for some semilinear PDEs [J].
Bambusi, D. .
HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, :213-247
[6]   Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on zoll manifolds [J].
Bambusi, D. ;
Delort, J.-M. ;
Grebert, B. ;
Szeftel, J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (11) :1665-1690
[7]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[8]   Normal form for NLS in arbitrary dimension [J].
Bambusi, D ;
Grébert, B .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (06) :409-414
[9]   Birkhoff normal form for some nonlinear PDEs [J].
Bambusi, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (02) :253-285
[10]  
Bernier J., 2018, ARXIV181211414