ON THE BEST CONSTANTS IN MARKOV-TYPE INEQUALITIES INVOLVING GEGENBAUER NORMS WITH DIFFERENT WEIGHTS

被引:0
作者
Boettcher, Albrecht [1 ]
Doerfler, Peter [2 ]
机构
[1] TU Chemnitz, Fac Math, D-09107 Chemnitz, Germany
[2] Univ Leoben, Dept Math & Informat Technol, A-8700 Leoben, Austria
来源
OPERATORS AND MATRICES | 2011年 / 5卷 / 02期
关键词
Markov inequality; Gegenbauer weight; ultraspherical polynomials; Toeplitz matrix; Volterra operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with best constants in Markov-type inequalities between the norm of a higher derivative of a polynomial and the norm of the polynomial itself. The norm of the polynomial is taken in L-2 with the Gegenbauer weight corresponding to a parameter alpha, while the derivative is measured in L-2 with the Gegenbauer weight for a parameter beta. Under the assumption that beta - alpha is an integer, we determine the first order asymptotics of the best constants as the degree of the polynomial goes to infinity.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 19 条
[1]   Extremal problems, inequalities, and classical orthogonal polynomials [J].
Agarwal, RP ;
Milovanovic, GV .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 128 (2-3) :151-166
[2]  
Andrews G.E., 1999, Encycl. Math. Appl., V71
[3]   On the best constants in Markov-type inequalities involving Laguerre norms with different weights [J].
Boettcher, Albrecht ;
Doerfler, Peter .
MONATSHEFTE FUR MATHEMATIK, 2010, 161 (04) :357-367
[4]   Weighted Markov-type inequalities, norms of Volterra operators, and zeros of Bessel functions [J].
Boettcher, Albrecht ;
Doerfler, Peter .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (01) :40-57
[5]  
Bottcher A., 1999, INTRO LARGE TRUNCATE
[6]  
DAUGAVET IK, 1972, VESTNIK LENINGRAD U, V1, P15
[7]   WEIGHTED L2-ANALOGS OF BERNSTEINS INEQUALITY AND CLASSICAL ORTHOGONAL POLYNOMIALS [J].
GUESSAB, A ;
MILOVANOVIC, GV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 182 (01) :244-249
[8]  
Ismail M. E. H., 2005, CLASSICAL QUANTUM OR
[9]  
KONIAGIN SV, 1978, DOKL AKAD NAUK SSSR+, V243, P1116
[10]   On the exact constant in the L2 Markov inequality [J].
Kroo, Andras .
JOURNAL OF APPROXIMATION THEORY, 2008, 151 (02) :208-211