NUMERICAL APPROACH TO SIMULATE DIFFUSION MODEL OF A FLUID-FLOW IN A POROUS MEDIA

被引:4
作者
Aghdam, Yones Esmaeelzade [1 ]
Farnam, Behnaz [2 ]
Jafari, Hosein [3 ,4 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Dept Math, Tehran, Iran
[2] Qom Univ Technol, Dept Math, Fac Sci, Qom, Iran
[3] Univ South Africa, Dept Math Sci, UNISA, Pretoria, South Africa
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
来源
THERMAL SCIENCE | 2021年 / 25卷 / SpecialIssue 2期
关键词
diffusion; Caputo derivative; numerical solutions; boundary conditions; APPROXIMATION; EQUATION;
D O I
10.2298/TSCI21S2255E
中图分类号
O414.1 [热力学];
学科分类号
摘要
When a particle distributes at a rate that deviates from the classical Brownian motion model, fractional space derivatives have been used to simulate anomalous diffusion or dispersion. When a fractional derivative substitutes the second-order derivative in a diffusion or dispersion model, amplified diffusion occurs (named super-diffusion). The proposed approach in this paper allows seeing the physical background of the newly defined Caputo space-time-fractional derivative and indicates that the order of convergence to approximate such equations has increased.
引用
收藏
页码:S255 / S261
页数:7
相关论文
共 13 条
[1]   High-accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis [J].
Aghdam, Y. Esmaeelzade ;
Mesgarani, H. ;
Moremedi, G. M. ;
Khoshkhahtinat, M. .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) :217-225
[2]   Numerical investigation of the two-dimensional space-time fractional diffusion equation in porous media [J].
Farnam, B. ;
Esmaeelzade Aghdam, Y. ;
Nikan, O. .
MATHEMATICAL SCIENCES, 2021, 15 (02) :153-160
[3]   THE HEAT RADIATION DIFFUSION EQUATION Explicit Analytical Solutions by Improved Integral-Balance Method [J].
Hristov, Jordan .
THERMAL SCIENCE, 2018, 22 (02) :777-788
[4]   TRANSIENT HEAT DIFFUSION WITH A NON-SINGULAR FADING MEMORY From the Cattaneo Constitutive Equation with Jeffrey's Kernel to the Caputo-Fabrizio Time-Fractional Derivative [J].
Hristov, Jordan .
THERMAL SCIENCE, 2016, 20 (02) :757-762
[5]   Double integral-balance method to the fractional subdiffusion equation: Approximate solutions, optimization problems to be resolved and numerical simulations [J].
Hristov, Jordan .
JOURNAL OF VIBRATION AND CONTROL, 2017, 23 (17) :2795-2818
[6]   Comparative study of three numerical schemes for fractional integro-differential equations [J].
Kumar, Kamlesh ;
Pandey, Rajesh K. ;
Sharma, Shiva .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 315 :287-302
[7]  
Mehrer H, 2007, Diffusion in Solids: Fundamentals, Methods, Materials, DiffusionControlled Processes, V155
[8]   An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation [J].
Nasrollahzadeh, F. ;
Hosseini, S. M. .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (02) :71-86
[9]  
Podlubny I, 1999, Fractional Differential Equations an Introduction To Fractional Derivatives
[10]   Diffusion in Porous Media: Phenomena and Mechanisms [J].
Tartakovsky, Daniel M. ;
Dentz, Marco .
TRANSPORT IN POROUS MEDIA, 2019, 130 (01) :105-127