Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid)

被引:301
作者
Schubert, Stephanie [1 ,2 ]
Delaney, Joseph T., Jr. [1 ,3 ,4 ]
Schubert, Ulrich S. [1 ,3 ,4 ]
机构
[1] Univ Jena, Lab Organ & Macromol Chem IOMC, D-07743 Jena, Germany
[2] Univ Jena, Pharmaceut Technol Lab, D-07743 Jena, Germany
[3] Dutch Polymer Inst, NL-5600 AX Eindhoven, Netherlands
[4] Eindhoven Univ Technol, Lab Macromol Chem & Nanosci, NL-5600 MB Eindhoven, Netherlands
关键词
PROTAMINE-ALBUMIN NANOPARTICLES; BIODEGRADABLE NANOPARTICLES; PLGA NANOPARTICLES; DRUG-DELIVERY; PLA NANOPARTICLES; GENE DELIVERY; IN-VITRO; RELEASE; NANOSPHERES; SIZE;
D O I
10.1039/c0sm00862a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoprecipitation is a facile, mild, and low energy input process for the preparation of polymeric nanoparticles. Basic requirements, as well as common techniques for the self-assembly of non-charged and non-amphiphilic macromolecules into defined nanoparticles are described. At present, the primary focus of polymer nanoprecipitation research lays on poly(lactic acid) (PLA) and its copolymer poly(lactic-co-glycolic acid) (PLGA). This contribution thus emphasises on polymers beyond PLA systems, such as common industrial-or tailored lab-made polymers, and their ability to form well-defined, functional nanoparticles for a variety of applications now and in the past two centuries. Moreover, in combination with high-throughput devices such as microfluidics, pipetting robots, inkjet printers, and automated analytical instrumentation, the abilities of nanoprecipitation may broaden tremendously with significant effects on new applications.
引用
收藏
页码:1581 / 1588
页数:8
相关论文
共 100 条
[1]   Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination [J].
Aline, Fleur ;
Brand, Denys ;
Pierre, Josette ;
Roingeard, Philippe ;
Severine, Munier ;
Verrier, Bernard ;
Dimier-Poisson, Isabelle .
VACCINE, 2009, 27 (38) :5284-5291
[2]   Nanoprecipitation of Polymethylmethacrylate by Solvent Shifting: 1. Boundaries [J].
Aubry, Julien ;
Ganachaud, Francois ;
Addad, Jean-Pierre Cohen ;
Cabane, Bernard .
LANGMUIR, 2009, 25 (04) :1970-1979
[3]   Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems [J].
Aumelas, A. ;
Serrero, A. ;
Durand, A. ;
Dellacherie, E. ;
Leonard, M. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2007, 59 (01) :74-80
[4]   Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method [J].
Barichello, JM ;
Morishita, M ;
Takayama, K ;
Nagai, T .
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 1999, 25 (04) :471-476
[5]  
BARTL R, 2008, BIOFORUM, V31, P22
[6]   Clicking Pentafluorostyrene Copolymers: Synthesis, Nanoprecipitation, and Glycosylation [J].
Becer, C. Remzi ;
Babiuch, Krzysztof ;
Pilz, David ;
Hornig, Stephanie ;
Heinze, Thomas ;
Gottschaldt, Michael ;
Schubert, Ulrich S. .
MACROMOLECULES, 2009, 42 (07) :2387-2394
[7]   Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation:: preparation, characterization and in vitro evaluation [J].
Betancourt, Tania ;
Brown, Brandon ;
Brannon-Peppas, Lisa .
NANOMEDICINE, 2007, 2 (02) :219-232
[8]   Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles [J].
Bilati, U ;
Allémann, E ;
Doelker, E .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2005, 24 (01) :67-75
[9]  
BLOOMFIELD GF, 1940, T I RUBBER IND, V16, P69
[10]  
BLOOMFIELD GF, 1941, RUBBER CHEM TECH, V14, P1