Collision avoidance with control barrier function for target tracking of an unmanned underwater vehicle

被引:3
作者
Deng, Zhigang [1 ]
Zaman, Mohammed Tonsil [2 ]
Chu, Zhenzhong [3 ]
机构
[1] Shanghai Maritime Univ, Informat Engn Coll, Shanghai 201306, Peoples R China
[2] Worcester Polytech Inst, Computat Intelligence & Bion Robot Lab, Robot Engn, Worcester, MA 01609 USA
[3] Shanghai Maritime Univ, Shanghai Engn Res Ctr Intelligent Maritime Search, Shanghai 201306, Peoples R China
来源
UNDERWATER TECHNOLOGY | 2020年 / 37卷 / 01期
基金
中国国家自然科学基金;
关键词
unmanned underwater vehicles (UUV); trajectory tracking; collision avoidance; control Lyapunov function (CLF); control barrier function (CBF); quadratic programming; SLIDING MODE CONTROL;
D O I
10.3723/ut.37.003
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Unmanned underwater vehicles (UUVs) move in dynamic environments and need to avoid other non-cooperative obstacles while executing a task, such as tracking a target or a special trajectory. It is a challenge to avoid collisions with moving obstacles in the tracking process. The present paper describes the implementation of horizonplane adaptive cruise control, which follows a given desired trajectory using control Lyapunov functions while satisfying constraints specified by a control barrier function to avoid collision with obstacles. The Lyapunov function is treated as a soft constraint, and the barrier function as hard constraint for the UUV; both are satisfied simultaneously using quadratic programming. Finally, the present paper describes a simulation of avoiding moving obstacles while tracking a target, with the results showing this as effective and feasible.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 25 条
[1]  
Ames AD, 2014, IEEE DECIS CONTR P, P6271, DOI 10.1109/CDC.2014.7040372
[2]   A novel adaptive control law for underwater vehicles [J].
Antonelli, G ;
Caccavale, F ;
Chiaverini, S ;
Fusco, G .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2003, 11 (02) :221-232
[3]   Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers [J].
Bagheri, A. ;
Karimi, T. ;
Amanifard, N. .
APPLIED SOFT COMPUTING, 2010, 10 (03) :908-918
[4]   Design and implementation of a remotely operated vehicle testbed [J].
Deng, Zhigang ;
Yuan, Fang ;
Zhu, Daqi ;
Xue, Feng .
UNDERWATER TECHNOLOGY, 2018, 35 (01) :13-22
[5]   Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles [J].
Elmokadem, Taha ;
Zribi, Mohamed ;
Youcef-Toumi, Kamal .
OCEAN ENGINEERING, 2017, 129 :613-625
[6]  
Gao Z, 2018, INT J ADAPT CONTROL, V32, P1
[7]   Single Input Fuzzy Logic Controller for Unmanned Underwater Vehicle [J].
Ishaque, Kashif ;
Abdullah, S. S. ;
Ayob, S. M. ;
Salam, Z. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2010, 59 (01) :87-100
[8]  
Jiang X.S., 2000, Unmanned Underwater Vehicles
[9]   Decoupled modelling and controller design for the hybrid autonomous underwater vehicle: MACO [J].
Kennedy, J. ;
Gamroth, E. ;
Bradley, C. ;
Proctor, A. A. ;
Heard, G. J. .
UNDERWATER TECHNOLOGY, 2007, 27 (01) :11-21
[10]   Robust Nonlinear Path-Following Control of an AUV [J].
Lapierre, Lionel ;
Jouvencel, Bruno .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2008, 33 (02) :89-102