Making optical atomic clocks more stable with 10-16-level laser stabilization

被引:246
作者
Jiang, Y. Y. [1 ,2 ]
Ludlow, A. D. [1 ]
Lemke, N. D. [1 ,3 ]
Fox, R. W. [1 ]
Sherman, J. A. [1 ]
Ma, L. -S. [2 ]
Oates, C. W. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] E China Normal Univ, State Key Lab Precis Spect, Shanghai, Peoples R China
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
LATTICE CLOCK; THERMAL-NOISE; FREQUENCY; STABILITY; CAVITIES;
D O I
10.1038/NPHOTON.2010.313
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2 x 10(-16). We use this laser as a stable optical source in a ytterbium optical lattice clock to resolve an ultranarrow 1 Hz linewidth for the 518 THz clock transition. With the stable laser source and the signal-to-noise ratio afforded by the ytterbium optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of 5 x 10(-16)/root tau.
引用
收藏
页码:158 / 161
页数:4
相关论文
共 28 条
[1]   Advances in atomic fountains [J].
Bize, S ;
Laurent, P ;
Abgrall, M ;
Marion, H ;
Maksimovic, I ;
Cacciapuoti, L ;
Grünert, J ;
Vian, C ;
dos Santos, FP ;
Rosenbusch, P ;
Lemonde, P ;
Santarelli, G ;
Wolf, P ;
Clairon, A ;
Luiten, A ;
Tobar, M ;
Salomon, C .
COMPTES RENDUS PHYSIQUE, 2004, 5 (08) :829-843
[2]   Optical atomic coherence at the 1-second time scale [J].
Boyd, Martin M. ;
Zelevinsky, Tanya ;
Ludlow, Andrew D. ;
Foreman, Seth M. ;
Blatt, Sebastian ;
Ido, Tetsuya ;
Ye, Jun .
SCIENCE, 2006, 314 (5804) :1430-1433
[3]   Optical Clocks and Relativity [J].
Chou, C. W. ;
Hume, D. B. ;
Rosenband, T. ;
Wineland, D. J. .
SCIENCE, 2010, 329 (5999) :1630-1633
[4]   Frequency Comparison of Two High-Accuracy Al+ Optical Clocks [J].
Chou, C. W. ;
Hume, D. B. ;
Koelemeij, J. C. J. ;
Wineland, D. J. ;
Rosenband, T. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[5]   Considerations on the measurement of the stability of oscillators with frequency counters [J].
Dawkins, Samuel T. ;
McFerran, John J. ;
Luiten, Andre N. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2007, 54 (05) :918-925
[6]  
Dick G., 1987, P PREC TIM TIM INT R, P133
[7]   Temperature analysis of low-expansion Fabry-Perot cavities [J].
Fox, Richard W. .
OPTICS EXPRESS, 2009, 17 (17) :15023-15031
[8]   QUANTUM PROJECTION NOISE - POPULATION FLUCTUATIONS IN 2-LEVEL SYSTEMS [J].
ITANO, WM ;
BERGQUIST, JC ;
BOLLINGER, JJ ;
GILLIGAN, JM ;
HEINZEN, DJ ;
MOORE, FL ;
RAIZEN, MG ;
WINELAND, DJ .
PHYSICAL REVIEW A, 1993, 47 (05) :3554-3570
[9]   Ultrastable optical clock with neutral atoms in an engineered light shift trap [J].
Katori, H ;
Takamoto, M ;
Pal'chikov, VG ;
Ovsiannikov, VD .
PHYSICAL REVIEW LETTERS, 2003, 91 (17)
[10]   Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors [J].
Legero, Thomas ;
Kessler, Thomas ;
Sterr, Uwe .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (05) :914-919