A Highly Integrated 3-D Printed Metallic K-Band Passive Front End as the Unit Cell in a Large Array for Satellite Communication

被引:31
作者
Zhang, Bing [1 ,2 ]
Li, Rongqiang [3 ]
Wu, Li [1 ]
Sun, Hucheng [4 ]
Guo, Yong-Xin [2 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Natl Univ Singapore, Fac Engn, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] Chengdu Univ Informat Technol, Coll Elect Engn, Chengdu 610225, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Jiangsu, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2018年 / 17卷 / 11期
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Conical horn antenna; K-band; power divider; selective laser melting (SLM); surface roughness; three-dimensional (3-D) printing; WAVE-GUIDE; HORN; STEREOLITHOGRAPHY; PERFORMANCE;
D O I
10.1109/LAWP.2018.2824298
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a three-dimensional (3-D) printedmetallic K-band (18-26.5 GHz) passive front end for satellite communication. It is intended to be used as a unit cell in a large antenna array. The proposed front end is composed of a two-stage 1 x 4 power divider, rectangular-to-circular waveguide tapers, and a linear four-element conical antenna array, which are too complex to be fabricated by a traditional machining process in a whole piece. Taking advantage of the 3-D printing technology in realizing complex structures, we achieve a highly integrated passive module. A good agreement is achieved between simulation and measurement. The proposed front end has impedance bandwidth 19-21 GHz, the maximum gain of 15.5 dBi at 21 GHz, and desirable radiation patterns on both E-and H-planes. The influence of fabrication tolerance like the surface roughness and dimensional tolerance are observed and analyzed. Compared with traditionally fabricated metallic microwave passive devices, the proposed work has a shorter turnaround time and a lower cost. Compared with dielectric 3-D printed microwave devices, it features more simplicity in terms of process and better physical robustness. It opens up new possibilities for microwave device fabrication.
引用
收藏
页码:2046 / 2050
页数:5
相关论文
共 38 条
[1]  
[Anonymous], EL BEAM MELT
[2]  
Bing Zhang, 2015, 2015 Asia-Pacific Microwave Conference (APMC). Proceedings, P1, DOI 10.1109/APMC.2015.7413011
[3]   Enhancing the Performance of Waveguide Filters Using Additive Manufacturing [J].
Booth, Paul ;
Lluch, Elena Valles .
PROCEEDINGS OF THE IEEE, 2017, 105 (04) :613-619
[4]   Dual-beam microstrip leaky-wave array excited by aperture-coupling method [J].
Chen, TL ;
Lin, YD .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (09) :2496-2498
[5]   Millimeter-Wave Multibeam Antenna Based on Eight-Port Hybrid [J].
Cheng, Yu Jian ;
Hong, Wei ;
Wu, Ke .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2009, 19 (04) :212-214
[6]   Multimaterial and Multilayer Direct Digital Manufacturing of 3-D Structural Microwave Electronics [J].
Church, Kenneth H. ;
Crane, Nathan B. ;
Deffenbaugh, Paul I. ;
Ketterl, Thomas P. ;
Neff, Clayton G. ;
Nesbitt, Patrick B. ;
Nussbaum, Justin T. ;
Perkowski, Casey ;
Tsang, Harvey ;
Castro, Juan ;
Wang, Jing ;
Weller, Thomas M. .
PROCEEDINGS OF THE IEEE, 2017, 105 (04) :688-701
[7]   3-D Printed Metal-Pipe Rectangular Waveguides [J].
D'Auria, Mario ;
Otter, William J. ;
Hazell, Jonathan ;
Gillatt, Brendan T. W. ;
Long-Collins, Callum ;
Ridler, Nick M. ;
Lucyszyn, Stepan .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2015, 5 (09) :1339-1349
[8]   Advanced Butler Matrices With Integrated Bandpass Filter Functions [J].
di Crestvolant, Vittorio Tornielli ;
Iglesias, Petronilo Martin ;
Lancaster, Michael J. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) :3433-3444
[9]   Polymer-Based Additive Manufacturing of High-Performance Waveguide and Antenna Components [J].
Dimitriadis, Alexandros I. ;
Debogovic, Tomislav ;
Favre, Mirko ;
Billod, Mathieu ;
Barloggio, Luca ;
Ansermet, Jean-Philippe ;
de Rijk, Emile .
PROCEEDINGS OF THE IEEE, 2017, 105 (04) :668-676
[10]   Effects of extreme surface roughness on 3D printed horn antenna [J].
Garcia, C. R. ;
Rumpf, R. C. ;
Tsang, H. H. ;
Barton, J. H. .
ELECTRONICS LETTERS, 2013, 49 (12) :734-735