Li2CO3: Insights into Its Blocking Effect on Li-Ion Transfer in Garnet Composite Electrolytes

被引:35
作者
Guo, Yixuan [1 ]
Cheng, Jun [1 ]
Zeng, Zhen [1 ]
Li, Yuanyuan [1 ]
Zhang, Hongqiang [1 ]
Li, Deping [1 ]
Ci, Lijie [1 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
garnet electrolyte; lithium carbonate; Li-ion conductivity; solid-state electrolyte; solid-state battery; STATE LITHIUM BATTERIES; POLYMER ELECTROLYTES; CONDUCTIVITY ENHANCEMENT; INTERFACIAL RESISTANCE; SURFACE-CHEMISTRY; CERAMIC FILLERS; STABILITY; MECHANISM; TRANSPORT;
D O I
10.1021/acsaem.1c03529
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet-type Li7La3Zr2O12 (LLZO) has been widely used as a filler in composite solid electrolytes (CSEs) to achieve when being exposed to an ambient atmosphere. The insulated Li2CO3 layer is thought to reduce the Li+ transportability of CSEs. However, further studies are still needed to find out the underlying mechanism, which helps to guide future filler modification and electrolyte design. Herein, the role of the Li2CO3 layer in CSEs is elucidated from different perspectives. The passivate Li2CO3 layer is verified to prohibit the formation of the high conductive interlayer, change the Li+ transport pathway, and decrease the carrier concentration in CSEs. Also, the Li2CO3 layer would reduce the electropositivity of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles, which therefore weakens the anchoring effect toward bis(trifluoromethanesulfonyl)imide (TFSI)-. Accordingly, without Li2CO3, the electrolyte of polyethylene oxide/LiTFSI/IL (ionic liquid) with LLZTO-AT (PLILA) displays 2 times higher ionic conductivity and an improved Li+ transference number of 0.49. Additionally, an excellent cycling performance is presented in Li symmetric cells and full cells with PLLA. This work provides a novel perspective for future research on lithium-ion transport mechanisms and inspires designing better-performance SSBs.
引用
收藏
页码:2853 / 2861
页数:9
相关论文
共 48 条
[21]   Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries [J].
Li, Yutao ;
Chen, Xi ;
Dolocan, Andrei ;
Cui, Zhiming ;
Xin, Sen ;
Xue, Leigang ;
Xu, Henghui ;
Park, Kyusung ;
Goodenough, John B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (20) :6448-6455
[22]   The reaction of Li6.5La3Zr1.5Ta0.5O12 with water [J].
Li, Yutao ;
Han, Jian-Tao ;
Vogel, Sven C. ;
Wang, Chang-An .
SOLID STATE IONICS, 2015, 269 :57-61
[23]   Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries [J].
Lin, Yue ;
Wang, Xuming ;
Liu, Jin ;
Miller, Jan D. .
NANO ENERGY, 2017, 31 :478-485
[24]   Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires [J].
Liu, Wei ;
Lee, Seok Woo ;
Lin, Dingchang ;
Shi, Feifei ;
Wang, Shuang ;
Sendek, Austin D. ;
Cui, Yi .
NATURE ENERGY, 2017, 2 (05)
[25]   Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers [J].
Liu, Wei ;
Liu, Nian ;
Sun, Jie ;
Hsu, Po-Chun ;
Li, Yuzhang ;
Lee, Hyun-Wook ;
Cui, Yi .
NANO LETTERS, 2015, 15 (04) :2740-2745
[26]  
Liu Z., ADV POWDER TECHNOL, V2021, DOI [10.1016/j.apmate.2021.10.002, DOI 10.1016/J.APMATE.2021.10.002]
[27]   Modification strategies of Li7La3Zr2O12 ceramic electrolyte for high-performance solid-state batteries [J].
Lv, Jian-Shuai ;
Guo, Shao-Ke ;
He, Yan-Bing .
TUNGSTEN, 2021, 3 (03) :260-278
[28]   Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li+/H+ Exchange in Aqueous Solutions [J].
Ma, Cheng ;
Rangasamy, Ezhiylmurugan ;
Liang, Chengdu ;
Sakamoto, Jeffrey ;
More, Karren L. ;
Chi, Miaofang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (01) :129-133
[29]   IONIC-CONDUCTION IN-SPACE CHARGE REGIONS [J].
MAIER, J .
PROGRESS IN SOLID STATE CHEMISTRY, 1995, 23 (03) :171-263
[30]   Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles -: art. no. 266104 [J].
Nan, CW ;
Fan, LZ ;
Lin, YH ;
Cai, Q .
PHYSICAL REVIEW LETTERS, 2003, 91 (26)