Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes

被引:67
作者
Kogan, M
Miller, E
机构
[1] Northeastern Univ, Boston, MA 02115 USA
[2] Math Sci Res Inst, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
flag variety; Schubert variety; Sagbi basis; toric degeneration; Gelfand-Tsetlin pattern; Borel-Weil theorem;
D O I
10.1016/j.aim.2004.03.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note constructs the flat toric degeneration of the manifold FLn of flags in C-n due to Gonciulea and Lakshmibai (Transform. Groups 1(3) (1996) 215) as an explicit GIT quotient of the Grobner degeneration due to Knutson and Miller (Grobner geometry of Schubert polynomials, Ann. Math. (2) to appear). This implies that Schubert varieties degenerate to reduced unions of toric varieties, associated to faces indexed by rc-graphs (reduced pipe dreams) in the Gelfand-Tsetlin polytope. Our explicit description of the toric degeneration of Fe, provides a simple explanation of how Gelfand-Tsetlin decompositions for irreducible polynomial representations of GL(n) arise via geometric quantization. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 25 条