MicroED for the study of protein-ligand interactions and the potential for drug discovery

被引:8
作者
Clark, Lisa J. [1 ]
Bu, Guanhong [2 ,3 ]
Nannenga, Brent L. [2 ,3 ]
Gonen, Tamir [1 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90024 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Chem Engn, Tempe, AZ 85287 USA
[3] Arizona State Univ, Ctr Appl Struct Discovery Biodesign Inst, Tempe, AZ 85287 USA
[4] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90024 USA
[5] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90024 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ELECTRON-DIFFRACTION DATA; DATA-COLLECTION; CRYSTAL-STRUCTURE; SCATTERING FACTORS; TOMOGRAPHY; CRYSTALLOGRAPHY; MICROCRYSTALS; NANOCRYSTALS; REFINEMENT; MEMBRANE;
D O I
10.1038/s41570-021-00332-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Microcrystal electron diffraction (MicroED) is an electron cryo-microscopy (cryo-EM) technique used to determine molecular structures with crystals that are a millionth the size needed for traditional single-crystal X-ray crystallography. An exciting use of MicroED is in drug discovery and development, where it can be applied to the study of proteins and small molecule interactions, and for structure determination of natural products. The structures are then used for rational drug design and optimization. In this Perspective, we discuss the current applications of MicroED for structure determination of protein-ligand complexes and potential future applications in drug discovery.
引用
收藏
页码:853 / 858
页数:6
相关论文
共 87 条
  • [1] Beam-sensitive metal-organic framework structure determination by microcrystal electron diffraction
    Banihashemi, Fateme
    Bu, Guanhong
    Thaker, Amar
    Williams, Dewight
    Lin, Jerry Y. S.
    Nannenga, Brent L.
    [J]. ULTRAMICROSCOPY, 2020, 216 (216)
  • [2] iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
    Battye, T. Geoff G.
    Kontogiannis, Luke
    Johnson, Owen
    Powell, Harold R.
    Leslie, Andrew G. W.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 : 271 - 281
  • [3] Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals
    Blum, Thorsten B.
    Housset, Dominique
    Clabbers, Max T. B.
    van Genderen, Eric
    Bacia-Verloop, Maria
    Zander, Ulrich
    McCarthy, Andrew A.
    Schoehn, Guy
    Ling, Wai Li
    Abrahams, Jan Pieter
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2021, 77 : 75 - 85
  • [4] Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry
    Blundell, Tom L.
    [J]. IUCRJ, 2017, 4 : 308 - 321
  • [5] Precession Electron Diffraction Tomography for Solving Complex Modulated Structures: the Case of Bi5Nb3O15
    Boullay, Philippe
    Palatinus, Lukas
    Barrier, Nicolas
    [J]. INORGANIC CHEMISTRY, 2013, 52 (10) : 6127 - 6135
  • [6] Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal
    Brazda, Petr
    Palatinus, Lukas
    Babor, Martin
    [J]. SCIENCE, 2019, 364 (6441) : 667 - +
  • [7] Polymorph evolution during crystal growth studied by 3D electron diffraction
    Broadhurst, Edward T.
    Xu, Hongyi
    Clabbers, Max T. B.
    Lightowler, Molly
    Nudelman, Fabio
    Zou, Xiaodong
    Parsons, Simon
    [J]. IUCRJ, 2020, 7 : 5 - 9
  • [8] Bu GH, 2021, METHODS MOL BIOL, V2215, P287, DOI 10.1007/978-1-0716-0966-8_13
  • [9] Serial protein crystallography in an electron microscope
    Buecker, Robert
    Hogan-Lamarre, Pascal
    Mehrabi, Pedram
    Schulz, Eike C.
    Bultema, Lindsey A.
    Gevorkov, Yaroslav
    Brehm, Wolfgang
    Yefanov, Oleksandr
    Oberthuer, Dominik
    Kassier, Guenther H.
    Miller, R. J. Dwayne
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Clabbers Max T B, 2020, Drug Discov Today Technol, V37, P93, DOI 10.1016/j.ddtec.2020.12.002