Shifted power method for positive semidefinite matrices using Gerschgorin

被引:0
|
作者
Choudhury, D. Roy [1 ]
机构
[1] Delhi Coll Engn, New Delhi, India
来源
WMSCI 2006: 10TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IV, PROCEEDINGS | 2006年
关键词
positive semidefinite; Gershgorin theorem; power method;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A technique is proposed to identify positive definiteness and positive semidefniteness of a real symmetric matrix using shifted power method. It is based on Gerschgorin theorem. The approach does not require determination of all principal minors of determinant and also determination of all eigenvalues of a system matirix. It is useful in various control system problems.
引用
收藏
页码:251 / 253
页数:3
相关论文
共 19 条
  • [1] Gangster operators and invincibility of positive semidefinite matrices
    Ferguson, Timothy
    Johnson, Charles
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) : 2096 - 2110
  • [2] Trace inequalities for positive semidefinite matrices with centrosymmetric structure
    Di Zhao
    Hongyi Li
    Zhiguo Gong
    Journal of Inequalities and Applications, 2012
  • [3] Trace inequalities for positive semidefinite matrices with centrosymmetric structure
    Zhao, Di
    Li, Hongyi
    Gong, Zhiguo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [4] Inequalities on partial traces of positive semidefinite block matrices
    Fu, Xiaohui
    Lau, Pan-Shun
    Tam, Tin-Yau
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 964 - 969
  • [5] Simply Exponential Approximation of the Permanent of Positive Semidefinite Matrices
    Anari, Nima
    Gurvits, Leonid
    Gharan, Shayan Oveis
    Saberi, Amin
    2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 914 - 925
  • [6] Inequalities related to trace and determinant of positive semidefinite block matrices
    Choi, Daeshik
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 532 : 1 - 7
  • [7] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [8] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Yang, Junjian
    Xu, Huan
    POSITIVITY, 2024, 28 (02)
  • [9] Improvements on some partial trace inequalities for positive semidefinite block matrices
    Li, Yongtao
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (17): : 2823 - 2838
  • [10] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Junjian Yang
    Huan Xu
    Positivity, 2024, 28