Green functions for the Dirac operator under local boundary conditions and applications

被引:7
作者
Raulot, Simon [1 ]
机构
[1] Univ Rouen, CNRS, UMR 6085, Lab Math Raphael Salem, F-76801 St Etienne, France
关键词
Manifolds with boundary; Conformally invariant operators; Dirac operator; Green function; Local boundary conditions; POSITIVE MASS THEOREM; YAMABE PROBLEM; MANIFOLDS; EIGENVALUE; INEQUALITY;
D O I
10.1007/s10455-010-9236-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we define the Green function for the Dirac operator under two local boundary conditions: the condition associated with a chirality operator (also called the chiral bag boundary condition) and the MIT bag boundary condition. Then we give some applications of these constructions for each Green function. From the existence of the chiral Green function, we derive an inequality on a spin conformal invariant which, in some cases, solves the Yamabe problem on manifolds with boundary. Finally, using the MIT Green function, we give a simple proof of a positive mass theorem previously proved by Escobar.
引用
收藏
页码:337 / 359
页数:23
相关论文
共 30 条
[1]   A spinorial analogue of Aubin's inequality [J].
Ammann, B. ;
Grosjean, J. -F. ;
Humbert, E. ;
Morel, B. .
MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (01) :127-151
[2]  
Ammann B, 2006, COMMUN ANAL GEOM, V14, P163
[3]   Positive mass theorem for the Yamabe problem on spin manifolds [J].
Ammann, B ;
Humbert, E .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (03) :567-576
[4]   A Yamabe type problem on compact spin manifolds [J].
Ammann, B ;
Humbert, E ;
Morel, B .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (12) :929-934
[5]   A spin-conformal lower bound of the first positive Dirac eigenvalue [J].
Ammann, B .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (01) :21-32
[6]  
AMMANN B, 2010, ARXIV10095618
[7]   An obstruction for the mean curvature of a conformal immersion Sn→Rn+1 [J].
Ammann, Bernd ;
Humbert, Emmanuel ;
Ahmedou, Mohameden Ould .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) :489-493
[8]  
Ammann B, 2009, COMMUN ANAL GEOM, V17, P429
[9]  
[Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa (3)
[10]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269