Convergence of Lagrange interpolation on the non uniform nodes on the unit circle

被引:2
作者
Bahadur, Swarnima [1 ]
Varun [1 ]
机构
[1] Univ Lucknow, Dept Math & Astron, Lucknow, Uttar Pradesh, India
来源
ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL | 2022年 / 15卷 / 02期
关键词
unit circle; non-uniform nodes; Jacobi polynomial; rate of convergence; Lagrange interpolation;
D O I
10.32513/asetmj/19322008219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This research article aims to staunchly study the approximation using Lagrange interpolation on the unit circle. Nodal system constitutes the vertically projected zeros of Jacobi polynomial onto the unit circle with boundary points at +/- 1. Moreover, convergence is obtained by considering analytic functions on a suitable domain accompanied by some numerical experiments.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 14 条
[1]  
Bahadur S., 2012, INT MATHE MATICAL FO, V7, P189
[2]   Gibbs-Wilbraham phenomenon on Lagrange interpolation based on analytic weights on the unit circle [J].
Berriochoa, E. ;
Cachafeiro, A. ;
Garcia Amor, J. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 365
[3]  
Bruck R., 1996, ANALYSIS-UK, V16, P273
[4]  
Daruis L, 2000, INDIAN J PURE AP MAT, V31, P1273
[5]   ON THE ALMOST EVERYWHERE DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS FOR ARBITRARY SYSTEM OF NODES [J].
ERDOS, P ;
VERTESI, P .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 36 (1-2) :71-89
[6]  
Grünwald G, 1943, ACTA MATH-DJURSHOLM, V75, P219
[7]  
Jackson D., 1911, Ueber die Genauigkeit der Annaherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung
[8]  
Kis O., 1960, Acta Math. Sci. Hungar., V11, P49
[9]   MEAN CONVERGENCE OF LAGRANGE INTERPOLATION .3. [J].
NEVAI, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :669-698
[10]  
Rivlin T. J., 1974, The Chebyshev polynomials: From approximation theory to algebra and number theory