Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection

被引:9
|
作者
Lourenco, Ines [1 ]
Mattila, Robert [1 ]
Rojas, Cristian R. [1 ]
Hu Xiaoming [2 ]
Wahlberg, Bo [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, Stockholm, Sweden
[2] KTH Royal Inst Technol, Sch Engn Sci, Div Optimizat & Syst Theory, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Belief estimation; counter-adversarial systems; hidden Markov models; inverse decision making; inverse filtering; VARIANCE PORTFOLIO SELECTION;
D O I
10.1007/s11424-021-1247-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hidden Markov model (HMM) comprises a state with Markovian dynamics that can only be observed via noisy sensors. This paper considers three problems connected to HMMs, namely, inverse filtering, belief estimation from actions, and privacy enforcement in such a context. First, the authors discuss how HMM parameters and sensor measurements can be reconstructed from posterior distributions of an HMM filter. Next, the authors consider a rational decision-maker that forms a private belief (posterior distribution) on the state of the world by filtering private information. The authors show how to estimate such posterior distributions from observed optimal actions taken by the agent. In the setting of adversarial systems, the authors finally show how the decision-maker can protect its private belief by confusing the adversary using slightly sub-optimal actions. Applications range from financial portfolio investments to life science decision systems.
引用
收藏
页码:1801 / 1820
页数:20
相关论文
共 50 条
  • [41] Exact filtering in conditionally Markov switching hidden linear models
    Pieczynski, Wojciech
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (9-10) : 587 - 590
  • [42] MCMC for hidden Markov models incorporating aggregation of states and filtering
    Rosales, RA
    BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (05) : 1173 - 1199
  • [43] MCMC for hidden Markov models incorporating aggregation of states and filtering
    Rafael A. Rosales
    Bulletin of Mathematical Biology, 2004, 66 : 1173 - 1199
  • [44] Topology Estimation of Hierarchical Hidden Markov Models for Language Models
    Wakabayashi, Kei
    Miura, Takao
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, 2010, 6177 : 129 - 139
  • [45] CONTRIBUTION OF BELIEF FUNCTIONS TO HIDDEN MARKOV MODELS WITH AN APPLICATION TO FAULT DIAGNOSIS
    Ramasso, Emmanuel
    2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 97 - 102
  • [46] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (09) : 795 - 796
  • [47] Markov models — hidden Markov models
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 795 - 796
  • [48] Maximum a Posteriori Estimation of Coupled Hidden Markov Models
    Iead Rezek
    Michael Gibbs
    Stephen J. Roberts
    Journal of VLSI signal processing systems for signal, image and video technology, 2002, 32 : 55 - 66
  • [49] Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    Peters, Gareth W.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 970 - 987
  • [50] Estimation of nonstationary hidden Markov models by MCMC sampling
    Djuric, PM
    Chun, JH
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1737 - 1740