Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection

被引:9
|
作者
Lourenco, Ines [1 ]
Mattila, Robert [1 ]
Rojas, Cristian R. [1 ]
Hu Xiaoming [2 ]
Wahlberg, Bo [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, Stockholm, Sweden
[2] KTH Royal Inst Technol, Sch Engn Sci, Div Optimizat & Syst Theory, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Belief estimation; counter-adversarial systems; hidden Markov models; inverse decision making; inverse filtering; VARIANCE PORTFOLIO SELECTION;
D O I
10.1007/s11424-021-1247-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hidden Markov model (HMM) comprises a state with Markovian dynamics that can only be observed via noisy sensors. This paper considers three problems connected to HMMs, namely, inverse filtering, belief estimation from actions, and privacy enforcement in such a context. First, the authors discuss how HMM parameters and sensor measurements can be reconstructed from posterior distributions of an HMM filter. Next, the authors consider a rational decision-maker that forms a private belief (posterior distribution) on the state of the world by filtering private information. The authors show how to estimate such posterior distributions from observed optimal actions taken by the agent. In the setting of adversarial systems, the authors finally show how the decision-maker can protect its private belief by confusing the adversary using slightly sub-optimal actions. Applications range from financial portfolio investments to life science decision systems.
引用
收藏
页码:1801 / 1820
页数:20
相关论文
共 50 条
  • [31] Semiparametric hidden Markov models: identifiability and estimation
    Dannemann, Joern
    Holzmann, Hajo
    Leister, Anna
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (06): : 418 - 425
  • [32] Nonparametric Density Estimation in Hidden Markov Models
    C.C.Y. Dorea
    L.C. Zhao
    Statistical Inference for Stochastic Processes, 2002, 5 (1) : 55 - 64
  • [33] Estimation and strong approximation of hidden Markov models
    Gerencsér, L
    Molnár-Sáska, G
    POSITIVE SYSTEMS, PROCEEDINGS, 2003, 294 : 313 - 320
  • [34] STATIONARY DISTRIBUTION ESTIMATION IN HIDDEN MARKOV MODELS
    Dorea, C. C. Y.
    Gilardoni, G. L.
    Goncalves, C. R.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2005, 5 (02) : 183 - 195
  • [35] Minimax a posteriori estimation in the hidden Markov models
    A. V. Borisov
    Automation and Remote Control, 2007, 68 : 1917 - 1930
  • [36] Risk and information in the estimation of hidden Markov models
    Ramezani, VR
    Marcus, SI
    Fu, M
    PROCEEDINGS OF THE 2004 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2004, : 1596 - 1601
  • [37] ESTIMATION OF PARAMETERS IN HIDDEN MARKOV-MODELS
    QIAN, W
    TITTERINGTON, DM
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 337 (1647): : 407 - 428
  • [38] Time delay estimation with hidden Markov models
    Azzouzi, M
    Nabney, IT
    NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2, 1999, (470): : 473 - 478
  • [39] Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime
    Krishnamurthy, V
    Yin, GG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (02) : 458 - 476
  • [40] Unsupervised Alignment of Privacy Policies using Hidden Markov Models
    Ramanath, Rohan
    Liu, Fei
    Sadeh, Norman M.
    Smith, Noah A.
    PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, 2014, : 605 - 610