Voronovskaya Type Results and Operators Fixing Two Functions

被引:10
作者
Acu, Ana Maria [1 ]
Maduta, Alexandra-Ioana [2 ]
Rasa, Ioan [2 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, RO-550012 Sibiu, Romania
[2] Tech Univ Cluj Napoca, Fac Automat & Comp Sci, Dept Math, Str Memorandumului 28, Cluj Napoca, Romania
关键词
positive linear operators; Voronovskaya type theorem; extended complete Chebyshev system; operators fixing two functions;
D O I
10.3846/mma.2021.13228
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper deals with positive linear operators which fix two functions. The transfer of a given sequence (L-n) of positive linear operators to a new sequence (K-n) is investigated. A general procedure to construct sequences of positive linear operators fixing two functions which form an Extended Complete Chebyshev system is described. The Voronovskaya type formula corresponding to the new sequence which is strongly influenced by the nature of the fixed functions is obtained. In the last section our results are compared with other results existing in literature.
引用
收藏
页码:395 / 410
页数:16
相关论文
共 34 条
[1]  
Acar T., 2019, Constructive Math. Anal., V2, P98, DOI DOI 10.33205/CMA.547221
[2]   Voronovskaya type results for Bernstein-Chlodovsky operators preserving e-2x [J].
Acar, Tuncer ;
Cappelletti Montano, Mirella ;
Garrancho, Pedro ;
Leonessa, Vita .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
[3]  
Acar T, 2019, B BELG MATH SOC-SIM, V26, P681
[4]   Szasz-Mirakyan Type Operators Which Fix Exponentials [J].
Acar, Tuncer ;
Aral, Ali ;
Cardenas-Morales, Daniel ;
Garrancho, Pedro .
RESULTS IN MATHEMATICS, 2017, 72 (03) :1393-1404
[5]  
Acar T, 2017, MEDITERR J MATH, V14, DOI 10.1007/s00009-016-0804-7
[6]   Asymptotic Formulas for Generalized Szasz-Mirakyan Operators [J].
Acar, Tuncer .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 :233-239
[7]   Iterates of convolution-type operators [J].
Acu, Ana-Maria ;
Heilmann, Margareta ;
Rasa, Ioan .
POSITIVITY, 2021, 25 (02) :495-506
[8]   On the iterates of some Bernstein-type operators [J].
Adell, JA ;
Badia, FG ;
delaCal, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 209 (02) :529-541
[9]   Shape preserving properties of generalized Bernstein operators on Extended Chebyshev spaces [J].
Aldaz, J. M. ;
Kounchev, O. ;
Render, H. .
NUMERISCHE MATHEMATIK, 2009, 114 (01) :1-25
[10]  
Altomare F, 2014, DEGRUYTER STUD MATH, V61, P1