Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediate- and high-risk prostate cancer patients

被引:31
作者
Losnegard, Are [1 ,2 ]
Reisaeter, Lars A. R. [1 ,2 ]
Halvorsen, Ole J. [3 ,4 ]
Jurek, Jakub [5 ]
Assmus, Jorg [6 ]
Arnes, Jarle B. [3 ]
Honore, Alfred [7 ]
Monssen, Jan A. [1 ]
Andersen, Erling [8 ]
Haldorsen, Ingfrid S. [2 ,9 ]
Lundervold, Arvid [9 ,10 ]
Beisland, Christian [2 ,7 ]
机构
[1] Haukeland Hosp, Dept Radiol, Bergen, Norway
[2] Univ Bergen, Dept Clin Med, Bergen, Norway
[3] Haukeland Hosp, Dept Pathol, Bergen, Norway
[4] Univ Bergen, Ctr Canc Biomarkers CCBIO, Dept Clin Med, Bergen, Norway
[5] Tech Univ Lodz, Inst Elect, Lodz, Poland
[6] Haukeland Hosp, Ctr Clin Res, Bergen, Norway
[7] Haukeland Hosp, Dept Urol, Bergen, Norway
[8] Haukeland Hosp, Dept Clin Engn, Bergen, Norway
[9] Haukeland Hosp, Mohn Med Imaging & Visualizat Ctr, Dept Radiol, Bergen, Norway
[10] Univ Bergen, Dept Biomed, Bergen, Norway
关键词
Prostate; neoplasms primary; magnetic resonance imaging; computer applications - detection; diagnosis; RADICAL PROSTATECTOMY; PARTIN TABLES; MRI; NOMOGRAM; FEATURES; RECURRENCE; ADENOCARCINOMA; PERFORMANCE; VALIDATION; DIAGNOSIS;
D O I
10.1177/0284185120905066
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background To investigate whether magnetic resonance (MR) radiomic features combined with machine learning may aid in predicting extraprostatic extension (EPE) in high- and non-favorable intermediate-risk patients with prostate cancer. Purpose To investigate the diagnostic performance of radiomics to detect EPE. Material and Methods MR radiomic features were extracted from 228 patients, of whom 86 were diagnosed with EPE, using prostate and lesion segmentations. Prediction models were built using Random Forest. Further, EPE was also predicted using a clinical nomogram and routine radiological interpretation and diagnostic performance was assessed for individual and combined models. Results The MR radiomic model with features extracted from the manually delineated lesions performed best among the radiomic models with an area under the curve (AUC) of 0.74. Radiology interpretation yielded an AUC of 0.75 and the clinical nomogram (MSKCC) an AUC of 0.67. A combination of the three prediction models gave the highest AUC of 0.79. Conclusion Radiomic analysis combined with radiology interpretation aid the MSKCC nomogram in predicting EPE in high- and non-favorable intermediate-risk patients.
引用
收藏
页码:1570 / 1579
页数:10
相关论文
共 49 条
[21]   Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study [J].
Ginsburg, Shoshana B. ;
Algohary, Ahmad ;
Pahwa, Shivani ;
Gulani, Vikas ;
Ponsky, Lee ;
Aronen, Hannu J. ;
Bostrom, Peter J. ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Taimen, Pekka ;
Villani, Robert ;
Stricker, Phillip ;
Rastinehad, Ardeshir R. ;
Jambor, Ivan ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (01) :184-193
[22]   Haralick Textural Features on T2-Weighted MRI Are Associated With Biochemical Recurrence Following Radiotherapy for Peripheral Zone Prostate Cancer [J].
Gnep, Khemara ;
Fargeas, Aureline ;
Gutierrez-Carvajal, Ricardo E. ;
Commandeur, Frederic ;
Mathieu, Romain ;
Ospina, Juan D. ;
Rolland, Yan ;
Rohou, Tanguy ;
Vincendeau, Sebastien ;
Hatt, Mathieu ;
Acosta, Oscar ;
de Crevoisier, Renaud .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (01) :103-117
[23]   Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching [J].
Guo, Yanrong ;
Gao, Yaozong ;
Shen, Dinggang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (04) :1077-1089
[24]   Can Radiologic Staging With Multiparametric MRI Enhance the Accuracy of the Partin Tables in Predicting Organ-Confined Prostate Cancer? [J].
Gupta, Rajan T. ;
Brown, Alison Flanagan ;
Silverman, Rachel Kloss ;
Tay, Kae Jack ;
Madden, John F. ;
George, Daniel J. ;
Polascik, Thomas J. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 207 (01) :87-95
[25]   FSL [J].
Jenkinson, Mark ;
Beckmann, Christian F. ;
Behrens, Timothy Ej. ;
Woolrich, Mark W. ;
Smith, Stephen M. .
NEUROIMAGE, 2012, 62 (02) :782-790
[26]  
Jurek J, 2017, SIG P ALGO ARCH ARR, P90, DOI 10.23919/SPA.2017.8166844
[27]   Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer [J].
Kattan, MW ;
Wheeler, TM ;
Scardino, PT .
JOURNAL OF CLINICAL ONCOLOGY, 1999, 17 (05) :1499-1507
[28]   Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models [J].
Khalvati, Farzad ;
Wong, Alexander ;
Haider, Masoom A. .
BMC MEDICAL IMAGING, 2015, 15
[29]   Radiomics: the process and the challenges [J].
Kumar, Virendra ;
Gu, Yuhua ;
Basu, Satrajit ;
Berglund, Anders ;
Eschrich, Steven A. ;
Schabath, Matthew B. ;
Forster, Kenneth ;
Aerts, Hugo J. W. L. ;
Dekker, Andre ;
Fenstermacher, David ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Lambin, Philippe ;
Balagurunathan, Yoganand ;
Gatenby, Robert A. ;
Gillies, Robert J. .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1234-1248
[30]   Accuracy of preoperative multiparametric magnetic resonance imaging for prediction of unfavorable pathology in patients with localized prostate cancer undergoing radical prostatectomy [J].
Lee, Hakmin ;
Kim, Chan Kyo ;
Park, Byung Kwan ;
Sung, Hyun Hwan ;
Han, Deok Hyun ;
Jeon, Hwang Gyun ;
Jeong, Byong Chang ;
Seo, Seong Il ;
Jeon, Seong Soo ;
Choi, Han Yong ;
Lee, Hyun Moo .
WORLD JOURNAL OF UROLOGY, 2017, 35 (06) :929-934