Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediate- and high-risk prostate cancer patients

被引:31
作者
Losnegard, Are [1 ,2 ]
Reisaeter, Lars A. R. [1 ,2 ]
Halvorsen, Ole J. [3 ,4 ]
Jurek, Jakub [5 ]
Assmus, Jorg [6 ]
Arnes, Jarle B. [3 ]
Honore, Alfred [7 ]
Monssen, Jan A. [1 ]
Andersen, Erling [8 ]
Haldorsen, Ingfrid S. [2 ,9 ]
Lundervold, Arvid [9 ,10 ]
Beisland, Christian [2 ,7 ]
机构
[1] Haukeland Hosp, Dept Radiol, Bergen, Norway
[2] Univ Bergen, Dept Clin Med, Bergen, Norway
[3] Haukeland Hosp, Dept Pathol, Bergen, Norway
[4] Univ Bergen, Ctr Canc Biomarkers CCBIO, Dept Clin Med, Bergen, Norway
[5] Tech Univ Lodz, Inst Elect, Lodz, Poland
[6] Haukeland Hosp, Ctr Clin Res, Bergen, Norway
[7] Haukeland Hosp, Dept Urol, Bergen, Norway
[8] Haukeland Hosp, Dept Clin Engn, Bergen, Norway
[9] Haukeland Hosp, Mohn Med Imaging & Visualizat Ctr, Dept Radiol, Bergen, Norway
[10] Univ Bergen, Dept Biomed, Bergen, Norway
关键词
Prostate; neoplasms primary; magnetic resonance imaging; computer applications - detection; diagnosis; RADICAL PROSTATECTOMY; PARTIN TABLES; MRI; NOMOGRAM; FEATURES; RECURRENCE; ADENOCARCINOMA; PERFORMANCE; VALIDATION; DIAGNOSIS;
D O I
10.1177/0284185120905066
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background To investigate whether magnetic resonance (MR) radiomic features combined with machine learning may aid in predicting extraprostatic extension (EPE) in high- and non-favorable intermediate-risk patients with prostate cancer. Purpose To investigate the diagnostic performance of radiomics to detect EPE. Material and Methods MR radiomic features were extracted from 228 patients, of whom 86 were diagnosed with EPE, using prostate and lesion segmentations. Prediction models were built using Random Forest. Further, EPE was also predicted using a clinical nomogram and routine radiological interpretation and diagnostic performance was assessed for individual and combined models. Results The MR radiomic model with features extracted from the manually delineated lesions performed best among the radiomic models with an area under the curve (AUC) of 0.74. Radiology interpretation yielded an AUC of 0.75 and the clinical nomogram (MSKCC) an AUC of 0.67. A combination of the three prediction models gave the highest AUC of 0.79. Conclusion Radiomic analysis combined with radiology interpretation aid the MSKCC nomogram in predicting EPE in high- and non-favorable intermediate-risk patients.
引用
收藏
页码:1570 / 1579
页数:10
相关论文
共 49 条
[1]   Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings [J].
Algohary, Ahmad ;
Viswanath, Satish ;
Shiradkar, Rakesh ;
Ghose, Soumya ;
Pahwa, Shivani ;
Moses, Daniel ;
Jambor, Ivan ;
Shnier, Ronald ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Purysko, Andrei S. ;
Verma, Sadhna ;
Ponsky, Lee ;
Stricker, Phillip ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :818-828
[2]  
[Anonymous], 2018, DICM2NII DICOM NIFTI
[3]  
[Anonymous], 2018, J UROL
[4]  
[Anonymous], 1995, P 3 INT C DOC AN REC
[5]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[6]   Extent of Extraprostatic Extension Independently Influences Biochemical Recurrence-free Survival: Evidence for Further pT3 Subclassification [J].
Ball, Mark W. ;
Partin, Alan W. ;
Epstein, Jonathan I. .
UROLOGY, 2015, 85 (01) :161-164
[7]   Prediction of Prostate Cancer Risk Among Men Undergoing Combined MRI-targeted and Systematic Biopsy Using Novel Pre-biopsy Nomograms That Incorporate MRI Findings [J].
Bjurlin, Marc A. ;
Rosenkrantz, Andrew B. ;
Sarkar, Saradwata ;
Lepor, Herbert ;
Huang, William C. ;
Huang, Richard ;
Venkataraman, Rajesh ;
Taneja, Samir S. .
UROLOGY, 2018, 112 :112-119
[8]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[9]   Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy [J].
Briganti, Alberto ;
Chun, Felix K. -H. ;
Salonia, Andrea ;
Zanni, Giuseppe ;
Scattoni, Vincenzo ;
Valiquette, Luc ;
Rigatti, Patrizio ;
Montorsi, Francesco ;
Karakiewicz, Pierre I. .
EUROPEAN UROLOGY, 2006, 49 (06) :1019-1027
[10]   MAPS: A Quantitative Radiomics Approach for Prostate Cancer Detection [J].
Cameron, Andrew ;
Khalvati, Farzad ;
Haider, Masoom A. ;
Wong, Alexander .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (06) :1145-1156