Tailoring higher-order topological phases via orbital hybridization

被引:4
作者
Mazanov, Maxim [1 ]
Gorlach, Maxim A. [1 ]
机构
[1] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
基金
俄罗斯科学基金会;
关键词
SOLITONS; STATES;
D O I
10.1103/PhysRevB.105.205117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Higher-order topological insulators (HOTIs) have attracted much attention in photonics due to the tightly localized disorder-robust corner and hinge states. Here, we reveal an unconventional HOTI phase with vanishing dipole and quadrupole polarizations. This phase arises in the array of evanescently coupled waveguides hosting degenerate s- and d-type orbital modes arranged in a square lattice with four waveguides in the unit cell. As we prove, the degeneracy of the modes with the different symmetry gives rise to the nontrivial topological properties rendering the system topologically equivalent to the two copies of the anisotropic two-dimensional Su-Schrieffer-Heeger model rotated by 90??? with respect to each other and based on s ?? d hybridized orbitals. We probe the unusual topology of the model by constructing a quantized Fu-Kane-type pseudospin pump. Our results introduce a route to tailor higher-order band topology leveraging both crystalline symmetries and accidental degeneracies of the different orbital modes.
引用
收藏
页数:6
相关论文
共 56 条
  • [31] Observation of higher-order topological acoustic states protected by generalized chiral symmetry
    Ni, Xiang
    Weiner, Matthew
    Alu, Andrea
    Khanikaev, Alexander B.
    [J]. NATURE MATERIALS, 2019, 18 (02) : 113 - +
  • [32] Topological protection of photonic mid-gap defect modes
    Noh, Jiho
    Benalcazar, Wladimir A.
    Huang, Sheng
    Collins, Matthew J.
    Chen, Kevin P.
    Hughes, Taylor L.
    Rechtsman, Mikael C.
    [J]. NATURE PHOTONICS, 2018, 12 (07) : 408 - 415
  • [33] Experimental realization of topological corner states in long-range-coupled electrical circuits
    Olekhno, Nikita A.
    Rozenblit, Alina D.
    Kachin, Valerii, I
    Dmitriev, Alexey A.
    Burmistrov, Oleg, I
    Seregin, Pavel S.
    Zhirihin, Dmitry, V
    Gorlach, Maxim A.
    [J]. PHYSICAL REVIEW B, 2022, 105 (08)
  • [34] Topological photonics
    Ozawa, Tomoki
    Price, Hannah M.
    Amo, Alberto
    Goldman, Nathan
    Hafezi, Mohammad
    Lu, Ling
    Rechtsman, Mikael C.
    Schuster, David
    Simon, Jonathan
    Zilberberg, Oded
    Carusotto, Iacopo
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (01)
  • [35] Second-order topological corner states with ultracold atoms carrying orbital angular momentum in optical lattices
    Pelegri, G.
    Marques, A. M.
    Ahufinger, V
    Mompart, J.
    Dias, R. G.
    [J]. PHYSICAL REVIEW B, 2019, 100 (20)
  • [36] Topological edge states and Aharanov-Bohm caging with ultracold atoms carrying orbital angular momentum
    Pelegri, G.
    Marques, A. M.
    Dias, R. G.
    Daley, A. J.
    Mompart, J.
    Ahufinger, V
    [J]. PHYSICAL REVIEW A, 2019, 99 (02)
  • [37] A quantized microwave quadrupole insulator with topologically protected corner states
    Peterson, Christopher W.
    Benalcazar, Wladimir A.
    Hughes, Taylor L.
    Bahl, Gaurav
    [J]. NATURE, 2018, 555 (7696) : 346 - +
  • [38] Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles
    Poddubny, Alexander
    Miroshnichenko, Andrey
    Slobozhanyuk, Alexey
    Kivshar, Yuri
    [J]. ACS PHOTONICS, 2014, 1 (02): : 101 - 105
  • [39] Photonic Floquet topological insulators
    Rechtsman, Mikael C.
    Zeuner, Julia M.
    Plotnik, Yonatan
    Lumer, Yaakov
    Podolsky, Daniel
    Dreisow, Felix
    Nolte, Stefan
    Segev, Mordechai
    Szameit, Alexander
    [J]. NATURE, 2013, 496 (7444) : 196 - 200
  • [40] Proof of the universality of mode symmetries in creating photonic Dirac cones
    Sakoda, Kazuaki
    [J]. OPTICS EXPRESS, 2012, 20 (22): : 25181 - 25194