Drop-on-Demand 3D Printing of Lithium Iron Phosphate Cathodes

被引:27
作者
Ben-Barak, Ido [1 ]
Kamir, Yosef [1 ]
Menkin, Svetlana [1 ]
Goor, Meital [1 ]
Shekhtman, Inna [1 ]
Ripenbein, Tania [1 ]
Galun, Ehud [2 ]
Golodnitsky, Diana [1 ]
Peled, Emanuel [1 ]
机构
[1] Tel Aviv Univ, Fac Exact Sci, Sch Chem, IL-6997801 Tel Aviv, Israel
[2] IMOD, Mat Div, Tel Aviv, Israel
关键词
ELECTRODE;
D O I
10.1149/2.0091903jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Printed secondary batteries have market potential in two main fields - highly customized personal electronic devices, and small scale battery production. While many different technologies may be utilized to produce a printed battery, drop-on-demand (DoD) dispensing has the advantage of being highly tailor-made, notably with the ability to produce both very thin and thick batteries. We report the cathode printing protocols, morphology and electrochemical properties of patterned electrodes. Our electrode inks are aqueous, with obvious environmental and processing benefits. We chose to study the lithium iron phosphate (LFP) cathode because of its excellent electrochemical performance. DoD-printed LFP cathodes exhibit close to theoretical capacity value, high-rate capability and close to 100% coulombic efficiency. The similarity of the voltage profiles, electrochemical performance and impedance components of the AC spectra of lithium cells with printed LFP cathodes to those of commercial electrodes, indicates that printing does not alter the charge/discharge mechanism of active electrode material. (c) The Author(s) 2018. Published by ECS.
引用
收藏
页码:A5059 / A5064
页数:6
相关论文
共 15 条
[1]  
[Anonymous], PSYCHIATRY, DOI [DOI 10.1038/S41598-018-32039-4, DOI 10.1038/S41398-017-0082-6]
[2]   Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries [J].
Delannoy, P. -E. ;
Riou, B. ;
Brousse, T. ;
Le Bideau, J. ;
Guyomard, D. ;
Lestriez, B. .
JOURNAL OF POWER SOURCES, 2015, 287 :261-268
[3]   Recent developments in cathode materials for lithium ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :939-954
[4]   Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries [J].
Fu, Kun ;
Wang, Yibo ;
Yan, Chaoyi ;
Yao, Yonggang ;
Chen, Yanan ;
Dai, Jiaqi ;
Lacey, Steven ;
Wang, Yanbin ;
Wan, Jiayu ;
Li, Tian ;
Wang, Zhengyang ;
Xu, Yue ;
Hu, Liangbing .
ADVANCED MATERIALS, 2016, 28 (13) :2587-+
[5]   Review-SEI: Past, Present and Future [J].
Peled, E. ;
Menkin, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1703-A1719
[6]   Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes [J].
Porcher, W. ;
Lestriez, B. ;
Jouanneau, S. ;
Guyomard, D. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2835-2843
[7]   Electroactivity of natural and synthetic triphylite [J].
Ravet, N ;
Chouinard, Y ;
Magnan, JF ;
Besner, S ;
Gauthier, M ;
Armand, M .
JOURNAL OF POWER SOURCES, 2001, 97-8 :503-507
[8]   Studies on LiFePO4 as cathode material using impedance spectroscopy [J].
Schmidt, Jan Philipp ;
Chrobak, Thorsten ;
Ender, Moses ;
Illig, Joerg ;
Klotz, Dino ;
Ivers-Tiffee, Ellen .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5342-5348
[9]   Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black [J].
Shin, Ho Chul ;
Cho, Won Il ;
Jang, Ho .
ELECTROCHIMICA ACTA, 2006, 52 (04) :1472-1476
[10]   Advances and Future Challenges in Printed Batteries [J].
Sousa, Ricardo E. ;
Costa, Carlos M. ;
Lanceros-Mendez, Senentxu .
CHEMSUSCHEM, 2015, 8 (21) :3539-3555