Optimal Control of Insect Populations

被引:1
作者
Albuquerque de Araujo, Anderson L. [1 ]
Boldrini, Jose L. [2 ]
Cabrales, Roberto C. [3 ]
Fernandez-Cara, Enrique [4 ,5 ]
Oliveira, Milton L. [6 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
[2] Univ Estadual Campinas, Fac Engn Mecan, Dept Sistemas Integrados, BR-13083970 Campinas, Brazil
[3] Univ La Serena, Inst Invest Multidisciplinaria Ciencia & Tecnol, La Serena 1720256, Chile
[4] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Seville 41004, Spain
[5] Univ Seville, IMUS, Seville 41004, Spain
[6] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
optimal control; optimality conditions; Dubovitskii-Milyutin formalism; computation of optimal solutions; DUBOVITSKII;
D O I
10.3390/math9151762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider some optimal control problems for systems governed by linear parabolic PDEs with local controls that can move along the domain region omega of the plane. We prove the existence of optimal paths and also deduce the first order necessary optimality conditions, using the Dubovitskii-Milyutin's formalism, which leads to an iterative algorithm of the fixed-point kind. This problem may be considered as a model for the control of a mosquito population existing in a given region by using moving insecticide spreading devices. In this situation, an optimal control is any trajectory or path that must follow such spreading device in order to reduce the population as much as possible with a reasonable not too expensive strategy. We illustrate our results by presenting some numerical experiments.
引用
收藏
页数:25
相关论文
共 14 条
[1]  
Adams R.A., 2003, Sobolev spaces
[2]  
Alexeev V., 1982, Commande optimale
[3]  
Boldrini JL, 2007, REV MAT COMPLUT, V20, P339
[4]   Some optimal control problems for a two-phase field model of solidification [J].
Boldrini, Jose Luiz ;
Calsavara Caretta, Bianca Morelli ;
Fernandez-Cara, Enrique .
REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01) :49-75
[5]  
Brandao AJV, 2008, ELECTRON J DIFFER EQ
[6]   The Dubovitskii and Milyutin Methodology Applied to an Optimal Control Problem Originating in an Ecological System [J].
Coronel, Anibal ;
Huancas, Fernando ;
Lozada, Esperanza ;
Rojas-Medar, Marko .
MATHEMATICS, 2021, 9 (05) :1-17
[7]  
De Araujo A.L.A., 2010, THESIS U CAMPINAS CA THESIS U CAMPINAS CA
[8]  
Eaton J. W., 2021, GNU Octave version 3.8.1 manual: A high-level interactive language for numerical computations
[9]   Dubovitskii-Milyutin formalism applied to optimal control problems with constraints given by the heat equation with final data [J].
Gayte, Inmaculada ;
Guillen-Gonzalez, Francisco ;
Rojas-Medar, Marko .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2010, 27 (01) :57-76
[10]  
Girsanov I.V., 1972, Lectures on mathematical theory of extremum problems, V67