In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9

被引:582
作者
Swiech, Lukasz [1 ,2 ,3 ]
Heidenreich, Matthias [1 ,2 ,3 ]
Banerjee, Abhishek [4 ]
Habib, Naomi [1 ,2 ,3 ]
Li, Yinqing [1 ,2 ,5 ]
Trombetta, John [1 ]
Sur, Mriganka [4 ]
Zhang, Feng [1 ,2 ,3 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[2] MIT, McGovern Inst Brain Res, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[3] MIT, McGovern Inst Brain Res, Dept Biol Engn, Cambridge, MA 02139 USA
[4] MIT, Picower Inst Learning & Memory, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
CPG-BINDING PROTEIN-2; RETT-SYNDROME; DUAL-RNA; TRANSCRIPTION; MECP2; CAS9; EXPRESSION; REPRESSION; NEURONS; MODEL;
D O I
10.1038/nbt.3055
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Probing gene function in the mammalian brain can be greatly assisted with methods to manipulate the genome of neurons in vivo. The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) 1 can be used to edit single or multiple genes in replicating eukaryotic cells, resulting in frame-shifting insertion/deletion (indel) mutations and subsequent protein depletion. Here, we delivered SpCas9 and guide RNAs using adeno-associated viral (AAV) vectors to target single (Mecp2) as well as multiple genes (Dnmt1, Dnmt3a and Dnmt3b) in the adult mouse brain in vivo. We characterized the effects of genome modifications in postmitotic neurons using biochemical, genetic, electrophysiological and behavioral readouts. Our results demonstrate that AAV-mediated SpCas9 genome editing can enable reverse genetic studies of gene function in the brain.
引用
收藏
页码:102 / U286
页数:9
相关论文
共 50 条
  • [21] In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy
    Han, Jeong Pil
    Kim, MinJeong
    Choi, Beom Seok
    Lee, Jeong Hyeon
    Lee, Geon Seong
    Jeong, Michaela
    Lee, Yeji
    Kim, Eun-Ah
    Oh, Hye-Kyung
    Go, Nanyeong
    Lee, Hyerim
    Lee, Kyu Jun
    Kim, Un Gi
    Lee, Jae Young
    Kim, Seokjoong
    Chang, Jun
    Lee, Hyukjin
    Song, Dong Woo
    Yeom, Su Cheong
    SCIENCE ADVANCES, 2022, 8 (03):
  • [22] Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets
    Zhu, Haibao
    Zhang, Linlin
    Tong, Sheng
    Lee, Ciaran M.
    Deshmukh, Harshavardhan
    Bao, Gang
    NATURE BIOMEDICAL ENGINEERING, 2019, 3 (02) : 126 - 136
  • [23] Gene Therapy for Glaucoma by Ciliary Body Aquaporin 1 Disruption Using CRISPR-Cas9
    Wu, Jiahui
    Bell, Oliver H.
    Copland, David A.
    Young, Alison
    Pooley, John R.
    Maswood, Ryea
    Evans, Rachel S.
    Khaw, Peng Tee
    Ali, Robin R.
    Dick, Andrew D.
    Chu, Colin J.
    MOLECULAR THERAPY, 2020, 28 (03) : 820 - 829
  • [24] CRISPR-Cas9 Gene Editing of the Sal1 Gene Family in Wheat
    Mohr, Toni
    Horstman, James
    Gu, Yong Q.
    Elarabi, Nagwa I.
    Abdallah, Naglaa A.
    Thilmony, Roger
    PLANTS-BASEL, 2022, 11 (17):
  • [25] Chemical Control of a CRISPR-Cas9 Acetyltransferase
    Shrimp, Jonathan H.
    Grose, Carissa
    Widmeyer, Stephanie R. T.
    Thorpe, Abigail L.
    Jadhav, Ajit
    Meier, Jordan L.
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 455 - 460
  • [26] Energy biotechnology in the CRISPR-Cas9 era
    Estrela, Raissa
    Cate, Jamie Harrison Doudna
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 38 : 79 - 84
  • [27] CRISPR-Cas9 System and Its Application
    Benesova, Eva
    CHEMICKE LISTY, 2020, 114 (09): : 586 - 590
  • [28] Comparison of CRISPR-MAD7 and CRISPR-Cas9 for Gene Disruptions in Komagataella phaffii
    Smirnov, Kirill
    Weiss, Florian
    Hatzl, Anna-Maria
    Rieder, Lukas
    Olesen, Kjeld
    Jensen, Sanne
    Glieder, Anton
    JOURNAL OF FUNGI, 2024, 10 (03)
  • [29] Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9
    Biegler, Matthew T.
    Fedrigo, Olivier
    Collier, Paul
    Mountcastle, Jacquelyn
    Haase, Bettina
    Tilgner, Hagen U.
    Jarvis, Erich D.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [30] Genome engineering of Clostridium difficile using the CRISPR-Cas9 system
    Wang, S.
    Hong, W.
    Dong, S.
    Zhang, Z. -T.
    Zhang, J.
    Wang, L.
    Wang, Y.
    CLINICAL MICROBIOLOGY AND INFECTION, 2018, 24 (10) : 1095 - 1099