Slowing DNA Transport Using Graphene-DNA Interactions

被引:101
作者
Banerjee, Shouvik [1 ,2 ]
Wilson, James [3 ]
Shim, Jiwook [1 ,4 ,5 ]
Shankla, Manish [6 ]
Corbin, Elise A. [1 ,5 ]
Aksimentiev, Aleksei [3 ]
Bashir, Rashid [1 ,4 ,5 ]
机构
[1] Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[6] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SINGLE-STRANDED-DNA; SOLID-STATE NANOPORES; MOLECULAR-DYNAMICS SIMULATIONS; BIOLOGICAL NANOPORE; PERSISTENCE LENGTH; AL2O3; NANOPORE; TRANSLOCATION; SENSORS; BASE; OXIDE;
D O I
10.1002/adfm.201403719
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Slowing down DNA translocation speed in a nanopore is essential to ensuring reliable resolution of individual bases. Thin membrane materials enhance spatial resolution but simultaneously reduce the temporal resolution as the molecules translocate far too quickly. In this study, the effect of exposed graphene layers on the transport dynamics of both single (ssDNA) and double-stranded DNA (dsDNA) through nanopores is examined. Nanopore devices with various combinations of graphene and Al2O3 dielectric layers in stacked membrane structures are fabricated. Slow translocations of ssDNA in nanopores drilled in membranes with layers of graphene are reported. The increased hydrophobic interactions between the ssDNA and the graphene layers could explain this phenomenon. Further confirmation of the hydrophobic origins of these interactions is obtained through reporting significantly faster translocations of dsDNA through these graphene layered membranes. Molecular dynamics simulations confirm the preferential interactions of DNA with the graphene layers as compared to the dielectric layer verifying the experimental findings. Based on our findings, we propose that the integration of multiple stacked graphene layers could slow down DNA enough to enable the identification of nucleobases.
引用
收藏
页码:936 / 946
页数:11
相关论文
共 77 条
  • [1] Competing Interactions in DNA Assembly on Graphene
    Akca, Saliha
    Foroughi, Ashkan
    Frochtzwajg, Daniel
    Postma, Henk W. Ch.
    [J]. PLOS ONE, 2011, 6 (04):
  • [2] Aksimentiev A, 2009, IEEE NANOTECHNOL MAG, V3, P21, DOI 10.1109/MNANO.2008.931112
  • [3] Direct imaging and chemical analysis of unstained DNA origami performed with a transmission electron microscope
    Alloyeau, Damien
    Ding, Baoquan
    Ramasse, Quentin
    Kisielowski, Christian
    Lee, Zonghoon
    Jeon, Ki-Joon
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (33) : 9375 - 9377
  • [5] Ashkenasy N., 2005, ANGEW CHEM, V117, P1425, DOI DOI 10.1002/ANGE.200462114
  • [6] Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore
    Banerjee, Shouvik
    Shim, Jiwook
    Rivera, Jose
    Jin, Xiaozhong
    Estrada, David
    Solovyeva, Vita
    You, Xueqiu
    Pak, James
    Pop, Eric
    Aluru, Narayana
    Bashir, Rashid
    [J]. ACS NANO, 2013, 7 (01) : 834 - 843
  • [7] Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations
    Batcho, PF
    Case, DA
    Schlick, T
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (09) : 4003 - 4018
  • [8] Bayley H., 2005, Nanobiotechnology, P93
  • [9] Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore
    Benner, Seico
    Chen, Roger J. A.
    Wilson, Noah A.
    Abu-Shumays, Robin
    Hurt, Nicholas
    Lieberman, Kate R.
    Deamer, David W.
    Dunbar, William B.
    Akeson, Mark
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (11) : 718 - 724
  • [10] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355