Conformal metrics with prescribed curvature functions on manifolds with boundary

被引:27
作者
Guan, Bo [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1353/ajm.2007.0025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Dirichlet problem for a class of fully nonlinear elliptic equations related to conformal deformations of metrics on Riemannian manifolds with boundary. As a consequence we prove the existence of a conformal metric, given its value on the boundary as a prescribed metric conformal to the (induced) background metric, with a prescribed curvature function of the Schouten tensor.
引用
收藏
页码:915 / 942
页数:28
相关论文
共 42 条
[2]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[3]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[4]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[5]   An a priori estimate for a fully nonlinear equation on four-manifolds [J].
Chang, SYA ;
Gursky, MJ ;
Yang, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :151-186
[6]   An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature [J].
Chang, SYA ;
Gursky, MJ ;
Yang, PC .
ANNALS OF MATHEMATICS, 2002, 155 (03) :709-787
[7]   A variational theory of the Hessian equation [J].
Chou, KS ;
Wang, XJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (09) :1029-1064
[8]  
EVANS LC, 1982, COMMUN PUR APPL MATH, V35, P334
[9]  
GARDING L, 1959, J MATH MECH, V8, P957
[10]  
GE YX, FULLY NONLINEAR