Singular equivalences of functor categories via Auslander-Buchweitz approximations

被引:1
作者
Ogawa, Yasuaki [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
关键词
Singular equivalence; Cotilting subcategory; Canonical module; Functor category; TRIANGULATED CATEGORIES; ALGEBRAS;
D O I
10.1016/j.jalgebra.2019.10.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to construct singular equivalences between functor categories. As a special case, we show that there exists a singular equivalence arising from a cotilting module T, namely, the singularity category of (T-perpendicular to)/[T] and that of (mod Lambda)/ [T] are triangle equivalent. In particular, the canonical module w over a commutative Noetherian ring R induces a singular equivalence between (CMR)/[omega] and (mod R)/[omega], which generalizes Matsui-Takahashi's theorem. Our result is based on a sufficient condition for an additive category A and its subcategory X so that the canonical inclusion X -> A induces a singular equivalence D-sg (A) similar or equal to D-sg(X), which is a functor category version of Xiao-Wu Chen's theorem. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:734 / 752
页数:19
相关论文
共 26 条
  • [1] [Anonymous], [No title captured]
  • [2] [Anonymous], 1986, UNPUB
  • [3] HOMOLOGICAL THEORY OF IDEMPOTENT IDEALS
    AUSLANDER, M
    PLATZECK, MI
    TODOROV, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (02) : 667 - 692
  • [4] STABLE EQUIVALENCE OF DUALIZING R-VARIETIES
    AUSLANDER, M
    REITEN, I
    [J]. ADVANCES IN MATHEMATICS, 1974, 12 (03) : 306 - 366
  • [5] Auslander M., 1989, Mem. Soc. Math. Fr, V38, P5
  • [6] Auslander M., 1996, REPRESENTATION THEOR, V18, P39
  • [7] Beligiannis A, 2007, MEM AM MATH SOC, V188, P1
  • [8] Buchweitz Bu R.-O., 1998, Contemporary Mathematics, V229, P81
  • [9] Unifying two results of Orlov on singularity categories
    Chen, Xiao-Wu
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2010, 80 (02): : 207 - 212
  • [10] CLINE E, 1988, J REINE ANGEW MATH, V391, P85