Self-Similarity in the Wide Sense for Information Flows With a Random Load Free on Distribution

被引:2
作者
Rusakov, Oleg [1 ]
Laskin, Michael [2 ]
机构
[1] St Petersburg State Univ, Dept Math & Mech, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
[2] St Petersburg High Sch Econ, Dept Logist, Kantemirovskaya St 3A, St Petersburg 194100, Russia
来源
2017 EUROPEAN CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (EECS) | 2017年
关键词
Poisson process; Random intensity; Laplace transform; Lamperti transform; fractional Ornstein-Uhlenbeck process; fractional Brownian motion;
D O I
10.1109/EECS.2017.35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For description of dynamics of changes random loads of information flows we examine the stochastic model of Double Stochastic Poisson process which manages points of changes the random loads. A special case of a discrete distribution for the random intensity provides the following covariance property to the corresponding Double Stochastic Poisson subordinator for a sequence of the random loads. Such covariance exactly coincides with the covariance of the fractional Ornstein-Uhlenbeck process. Applying the Lamperti transform we obtain a self-similar random process with continuous time, stationary in the wide sense increments, and one dimensional distributions scaling the distribution of a term of the the initial subordinated sequence of the random loads. The Central Limit Theorem for vectors allows us to obtain in a limit, in the sense of convergence of finite dimensional distributions, the fractional Gaussian Brownian motion and the fractional Ornstein-Uhlenbeck process.
引用
收藏
页码:142 / 146
页数:5
相关论文
共 9 条
[1]  
[Anonymous], 2008, INTRO PROBABILITY TH
[2]   Stationary and self-similar processes driven by Levy processes [J].
Barndorff-Nielsen, OE ;
Pérez-Abreu, V .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) :357-369
[3]  
Lamperti JW., 1962, T AM MATH SOC, V104, P62, DOI 10.1090/S0002-9947-1962-0138128-7
[4]  
Rusakov O. V., 2011, J MATH SCI, V176, P232
[5]  
Rusakov O. V., 2009, J MATH SCI, V159, P350
[6]  
Rusakov O. V., 2015, J MATH SCI, P1
[7]   A Stochastic Model for Stationary Dynamics of Prices in Real Estate Markets. A Case of Random Intensity for Poisson Moments of Prices Changes [J].
Rusakov, Oleg ;
Laskin, Michael .
APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 1836
[8]  
[Русаков Олег Витальевич Rusakov Oleg V.], 2017, [Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya], V4, P247, DOI 10.21638/11701/spbu01.2017.208
[9]   Fractional Ornstein-Uhlenbeck Levy processes and the Telecom process: Upstairs and downstairs [J].
Wolpert, RL ;
Taqqu, MS .
SIGNAL PROCESSING, 2005, 85 (08) :1523-1545