Genetic analysis of variation in gene expression in Arabidopsis thaliana

被引:102
|
作者
Vuylsteke, M
van Eeuwijk, F
Van Hummelen, P
Kuiper, M
Zabeau, M
机构
[1] State Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium
[2] Univ Wageningen & Res Ctr, Lab Plant Breeding, NL-6700 AJ Wageningen, Netherlands
关键词
D O I
10.1534/genetics.105.041509
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In Arabidopsis thaliana, significant efforts to determine the extent of genomic variation between phenotypically divergent accessions are under way, but virtually nothing is known about variation at the transcription level. We used microarrays to examine variation in transcript abundance among three inbred lines and two pairs of reciprocal F, hybrids of the highly self-fertilizing species Arabidopsis. Composite additive genetic effects for gene expression were estimated from pairwise comparisons of the three accessions Columbia (Col), Landsberg erecta (Ler), and Cape Verde Islands (Cvi). For the pair Col and Ler 27.0% of the 4876 genes exhibited additive genetic effects in their expression (alpha = 0.001) vs. 32.2 and 37.5% for Cvi with Lerand Col, respectively. Significant differential expression ranged from 32.45 down to 1.10 in fold change and typically differed by a factor of 1.56. Maternal or paternal transmission affected only a few genes, suggesting that the reciprocal effects observed in the two crosses analyzed were minimal. Dominance effects were estimated from the comparisons of hybrids with the corresponding midparent value. The percentage of genes showing dominance at the expression level in the F, hybrids ranged from 6.4 to 21.1 % (alpha. = 0.001). Breakdown of these numbers of genes according to the magnitude of the dominance ratio revealed heterosis for expression for on average 9% of the genes. Further advances in the genetic analysis of gene expression variation may contribute to a better understanding of its role in affecting quantitative trait variation at the phenotypic level.
引用
收藏
页码:1267 / 1275
页数:9
相关论文
共 50 条
  • [1] Internet Resources for Gene Expression Analysis in Arabidopsis thaliana
    Hehl, Reinhard
    Buelow, Lorenz
    CURRENT GENOMICS, 2008, 9 (06) : 375 - 380
  • [2] Expression analysis by gene trap mutagenesis in Arabidopsis thaliana
    Kato, T
    Sato, S
    Tabata, S
    PLANT AND CELL PHYSIOLOGY, 2002, 43 : S209 - S209
  • [3] Analysis of Arabidopsis thaliana that was suppressed peroxin gene expression
    Kamigaki, Akane
    Hayashi, Makoto
    Nishimura, Mikio
    PLANT AND CELL PHYSIOLOGY, 2007, 48 : S25 - S25
  • [4] Analysis of gene expression in gravitropism mutants of Arabidopsis thaliana
    Rosen, ES
    Poff, KL
    PLANT PHYSIOLOGY, 1996, 111 (02) : 722 - 722
  • [5] Genetic architecture of variation in Arabidopsis thaliana rosettes
    Moron-Garcia, Odin
    Garzon-Martinez, Gina A.
    Pilar Martinez-Martin, M. J.
    Brook, Jason
    Corke, Fiona M. K.
    Doonan, John H.
    Camargo Rodriguez, Anyela, V
    PLOS ONE, 2022, 17 (02):
  • [6] Naturally occurring genetic variation in Arabidopsis thaliana
    Koornneef, M
    Alonso-Blanco, C
    Vreugdenhil, D
    ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 : 141 - 172
  • [7] Genetic variation flowering time in Arabidopsis thaliana
    Peeters, AJM
    Koornneef, M
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1996, 7 (03) : 381 - 389
  • [8] Genetic architecture of regulatory variation in Arabidopsis thaliana
    Zhang, Xu
    Cal, Andrew J.
    Borevitz, Justin O.
    GENOME RESEARCH, 2011, 21 (05) : 725 - 733
  • [9] Stochastic gene expression in Arabidopsis thaliana
    Araujo, Ilka Schultheiss
    Pietsch, Jessica Magdalena
    Keizer, Emma Mathilde
    Greese, Bettina
    Balkunde, Rachappa
    Fleck, Christian
    Huelskamp, Martin
    NATURE COMMUNICATIONS, 2017, 8
  • [10] Stochastic gene expression in Arabidopsis thaliana
    Ilka Schultheiß Araújo
    Jessica Magdalena Pietsch
    Emma Mathilde Keizer
    Bettina Greese
    Rachappa Balkunde
    Christian Fleck
    Martin Hülskamp
    Nature Communications, 8