Mining Spatial Co-location Patterns by the Fuzzy Technology

被引:6
|
作者
Lei, Le [1 ]
Wang, Lizhen [1 ]
Wang, Xiaoxuan [1 ]
机构
[1] Yunnan Univ, Dept Comp Sci & Engn, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
spatial co-location pattern mining; fuzzy set theory; fuzzy neighborhood relationship; fuzzy clustering;
D O I
10.1109/ICBK.2019.00025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main purpose of co-location pattern mining is to mine the set of spatial features whose instances are frequently located together in space. Because a single distance threshold is chosen in the previous methods when generating the neighbourhood relationships, some interesting spatial co-location patterns can't be extracted. In addition, previous methods don't take the neighborhood degree into consideration and they depend upon the PI (participation index) to measure the prevalence of the co-locations, which these methods are very sensitive to PI and also lead to the absence of co-location patterns. In order to overcome these limitations of traditional co-location pattern mining, considering that the neighbor relationship is a fuzzy concept, this paper introduces the fuzzy theory into co-location pattern mining, a new fuzzy spatial neighborhood relationship measurement between instances and a reasonable feature proximity measurement between spatial features are proposed. Then, a novel algorithm based on fuzzy C-medoids clustering algorithm, FCB, is proposed, extensive experiments on synthetic and real-world data sets prove the practicability and efficiency of the proposed mining algorithm, it also proves that the algorithm has low sensitivity to thresholds and has high robustness.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
  • [1] Mining spatial dynamic co-location patterns
    Duan, Jiangli
    Wang, Lizhen
    Hu, Xin
    Chen, Hongmei
    FILOMAT, 2018, 32 (05) : 1491 - 1497
  • [2] Interactively Mining Interesting Spatial Co-Location Patterns by Using Fuzzy Ontologies
    Yao, Jiasheng
    Bao, Xuguang
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 14094 LNCS : 112 - 124
  • [3] Efficiently mining spatial co-location patterns utilizing fuzzy grid cliques
    Hu, Zisong
    Wang, Lizhen
    Tran, Vanha
    Chen, Hongmei
    INFORMATION SCIENCES, 2022, 592 : 361 - 388
  • [4] Incremental Mining of Spatial Co-Location Patterns ased on the Fuzzy Neighborhood Relationship
    Wang, Meijiao
    Wang, Lizhen
    Qian, Yanjun
    Fang, Dianwu
    FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 652 - 660
  • [5] Mining Co-location Patterns with Spatial Distribution Characteristics
    Zhao, Jiasong
    Wang, Lizhen
    Bao, Xuguang
    Tan, Yaqing
    2016 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2016, : 26 - 30
  • [6] MINING CO-LOCATION PATTERNS FROM SPATIAL DATA
    Zhou, C.
    Xiao, W. D.
    Tang, D. Q.
    XXIII ISPRS CONGRESS, COMMISSION II, 2016, 3 (02): : 85 - 90
  • [7] Mining Co-location Patterns in Incremental Spatial Databases
    Chang, Ye-In
    Wu, Chen-Chang
    Yen, Ching-Yi
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 141 - 148
  • [8] A Framework for Co-location Patterns Mining in Big Spatial Data
    Garaeva, A.
    Makhmutova, F.
    Anikin, I.
    Sattler, Kai-Uwe
    PROCEEDINGS OF 2017 XX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM), 2017, : 477 - 480
  • [9] A Framework for Mining Spatial High Utility Co-location Patterns
    Yang, Shisheng
    Wang, Lizhen
    Bao, Xuguang
    Lu, Junli
    2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2015, : 595 - 601
  • [10] Enumeration of maximal clique for mining spatial co-location patterns
    Al-Naymat, Ghazi
    2008 IEEE/ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, VOLS 1-3, 2008, : 126 - 133