An oscillator with two discontinuous lines and Van der Pol damping

被引:7
|
作者
Chen, Hebai [1 ]
Tang, Yilei [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Shanghai Jiao Tong Univ, MOE LSC, Sch Math Sci, Shanghai 200240, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Discontinuous dynamical system; Grazing cycle; Limit cycle; Bifurcation; Global dynamics; LIMIT-CYCLES; BIFURCATIONS; SYSTEMS;
D O I
10.1016/j.bulsci.2020.102867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the discontinuous limit case of a smooth oscillator with a Van der Pol damping, which is a Filippov system with two discontinuous lines. The qualitative properties of all equilibria including that at infinity are obtained for this discontinuous piecewise smooth oscillator. By applying qualitative theory for smooth systems and for nonsmooth systems, we give necessary and sufficient conditions for the existence of limit cycles and grazing cycles. Particularly, it is demonstrated that this oscillator has at most two large limit cycles, two small limit cycles, one large double limit cycle and three classes of grazing cycles in different parameter regions. We present completely the bifurcation diagram and all global phase portraits of this oscillator model. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] On limit cycle approximations in the van der Pol oscillator
    Padín, MS
    Robbio, FI
    Moiola, JL
    Chen, GR
    CHAOS SOLITONS & FRACTALS, 2005, 23 (01) : 207 - 220
  • [42] On the Formation of Feedbacks in the Van der Pol Spatial Oscillator
    V. F. Zhuravlev
    Mechanics of Solids, 2020, 55 : 926 - 931
  • [43] Dynamics of a simplified van der Pol oscillator revisited
    Luo, Albert C. J.
    Rajendran, Arun
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINERING CONGRESS AND EXPOSITION 2007, VOL 9, PTS A-C: MECHANICAL SYSTEMS AND CONTROL, 2008, : 1885 - 1892
  • [44] Critical Response of a Quantum van der Pol Oscillator
    Dutta, Shovan
    Cooper, Nigel R.
    PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [45] Van der Pol Oscillator. Technical Applications
    Zhuravlev, V. Ph.
    MECHANICS OF SOLIDS, 2020, 55 (01) : 132 - 137
  • [46] Van der Pol oscillator with time variable parameters
    L. Cveticanin
    Acta Mechanica, 2013, 224 : 945 - 955
  • [47] The Buffer Phenomenon in the Van Der Pol Oscillator with Delay
    A. Yu. Kolesov
    N. Kh. Rozov
    Differential Equations, 2002, 38 : 175 - 186
  • [48] The existence of closed trajectory in the van der Pol oscillator
    Wang, D
    Zhou, SB
    Yu, JB
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 1629 - 1632
  • [49] Parametric excitation for forcing van der Pol oscillator
    Abd El-Latif, GM
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) : 255 - 265
  • [50] Van der Pol oscillator with time variable parameters
    Cveticanin, L.
    ACTA MECHANICA, 2013, 224 (05) : 945 - 955