An oscillator with two discontinuous lines and Van der Pol damping

被引:7
作者
Chen, Hebai [1 ]
Tang, Yilei [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Shanghai Jiao Tong Univ, MOE LSC, Sch Math Sci, Shanghai 200240, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2020年 / 161卷
基金
中国国家自然科学基金;
关键词
Discontinuous dynamical system; Grazing cycle; Limit cycle; Bifurcation; Global dynamics; LIMIT-CYCLES; BIFURCATIONS; SYSTEMS;
D O I
10.1016/j.bulsci.2020.102867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the discontinuous limit case of a smooth oscillator with a Van der Pol damping, which is a Filippov system with two discontinuous lines. The qualitative properties of all equilibria including that at infinity are obtained for this discontinuous piecewise smooth oscillator. By applying qualitative theory for smooth systems and for nonsmooth systems, we give necessary and sufficient conditions for the existence of limit cycles and grazing cycles. Particularly, it is demonstrated that this oscillator has at most two large limit cycles, two small limit cycles, one large double limit cycle and three classes of grazing cycles in different parameter regions. We present completely the bifurcation diagram and all global phase portraits of this oscillator model. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:38
相关论文
共 36 条
[1]  
[Anonymous], 1918, ERZWUNGENE SCHWINGUN
[2]   PIECEWISE LINEAR PERTURBATIONS OF A LINEAR CENTER [J].
Buzzi, Claudio ;
Pessoa, Claudio ;
Torregrosa, Joan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) :3915-3936
[3]   Multiple Buckling and Codimension-Three Bifurcation Phenomena of a Nonlinear Oscillator [J].
Cao, Q. J. ;
Han, Y. W. ;
Liang, T. W. ;
Wiercigroch, M. ;
Piskarev, S. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01)
[4]   Archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Grebogi, Celso ;
Thompson, J. Michael T. .
PHYSICAL REVIEW E, 2006, 74 (04)
[5]  
Chen H., 2016, J PHYS A-MATH THEOR, V49
[6]   Global dynamics of a SD oscillator [J].
Chen, Hebai ;
Llibre, Jaume ;
Tang, Yilei .
NONLINEAR DYNAMICS, 2018, 91 (03) :1755-1777
[7]   Limit cycles in planar continuous piecewise linear systems [J].
Chen, Hebai ;
Li, Denghui ;
Xie, Jianhua ;
Yue, Yuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 47 :438-454
[8]   Global Analysis on the Discontinuous Limit Case of a Smooth Oscillator [J].
Chen, Hebai .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04)
[9]   Forcing, damping and detuning for single and coupled Van der Pol oscillators [J].
Chillingworth, D. R. J. ;
Afshar-nejad, Z. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (02) :267-297
[10]   Bifurcations in Nonsmooth Dynamical Systems [J].
di Bernardo, Mario ;
Budd, Chris J. ;
Champneys, Alan R. ;
Kowalczyk, Piotr ;
Nordmark, Arne B. ;
Tost, Gerard Olivar ;
Piiroinen, Petri T. .
SIAM REVIEW, 2008, 50 (04) :629-701