Addressing Inaccurate Nosology in Mental Health: A Multilabel Data Cleansing Approach for Detecting Label Noise From Structural Magnetic Resonance Imaging Data in Mood and Psychosis Disorders

被引:19
作者
Rokham, Hooman [1 ,2 ,3 ]
Pearlson, Godfrey [6 ,7 ,8 ]
Abrol, Anees [2 ,3 ,4 ]
Falakshahi, Haleh [1 ,2 ,3 ]
Plis, Sergey [2 ,3 ,4 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30303 USA
[2] Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[3] Emory Univ, Atlanta, GA 30322 USA
[4] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[5] Georgia State Univ, Dept Psychol, Atlanta, GA 30303 USA
[6] Yale Univ, Dept Psychiat, New Haven, CT 06520 USA
[7] Yale Univ, Dept Neurosci, New Haven, CT USA
[8] Hartford Hosp, Olin Neuropsychiat Res Ctr, Hartford, CT 06115 USA
关键词
Data cleansing; Deep learning; Label noise; Machine learning; Psychosis disorders; Structural MRI; BIPOLAR-SCHIZOPHRENIA NETWORK; PHENOTYPES; CLASSIFICATION; HETEROGENEITY; FRAMEWORK;
D O I
10.1016/j.bpsc.2020.05.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BACKGROUND: Mental health diagnostic approaches are seeking to identify biological markers to work alongside advanced machine learning approaches. It is difficult to identify a biological marker of disease when the traditional diagnostic labels themselves are not necessarily valid. METHODS: We worked with T1 structural magnetic resonance imaging data collected from 1493 individuals comprising healthy control subjects, patients with psychosis, and their unaffected first-degree relatives. Specifically, the dataset included 176 bipolar disorder probands, 134 schizoaffective disorder probands, 240 schizophrenia probands, 362 control subjects, and 581 patient relatives. We assumed that there might be noise in the diagnostic labeling process. We detected label noise by classifying the data multiple times using a support vector machine classifier, and then we flagged those individuals in which all classifiers unanimously mislabeled those subjects. Next, we assigned a new diagnostic label to these individuals, based on the biological data (magnetic resonance imaging), using an iterative data cleansing approach. RESULTS: Simulation results showed that our method was highly accurate in identifying label noise. Both diagnostic and biotype categories showed about 65% and 63% of noisy labels, respectively, with the largest amount of relabeling occurring between the healthy control subjects and individuals with bipolar disorder and schizophrenia as well as in unaffected close relatives. The extraction of imaging features highlighted regional brain changes associated with each group. CONCLUSIONS: This approach represents an initial step toward developing strategies that need not assume that existing mental health diagnostic categories are always valid but rather allows us to leverage this information while also acknowledging that there are misassignments.
引用
收藏
页码:819 / 832
页数:14
相关论文
共 38 条
[1]  
Abrol A, 2019, ANN INT C IEEE ENG M
[2]   Heterogeneity in psychiatric diagnostic classification [J].
Allsopp, Kate ;
Read, John ;
Corcoran, Rhiannon ;
Kinderrnan, Peter .
PSYCHIATRY RESEARCH, 2019, 279 :15-22
[3]   Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder [J].
Amann, B. L. ;
Canales-Rodriguez, J. ;
Madre, M. ;
Radua, J. ;
Monte, G. ;
Alonso-Lana, S. ;
Landin-Romero, R. ;
Moreno-Alcazar, A. ;
Bonnin, C. M. ;
Sarro, S. ;
Ortiz-Gil, J. ;
Gomar, J. J. ;
Moro, N. ;
Fernandez-Corcuera, P. ;
Goikolea, J. M. ;
Blanch, J. ;
Salvador, R. ;
Vieta, E. ;
McKenna, P. J. ;
Pomarol-Clotet, E. .
ACTA PSYCHIATRICA SCANDINAVICA, 2016, 133 (01) :23-33
[4]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[5]  
Bellman R. E., 2015, APPL DYNAMIC PROGRAM
[6]   Identifying mislabeled training data [J].
Brodley, CE ;
Friedl, MA .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1999, 11 :131-167
[7]   MISCLASSIFICATION IN 2 X 2 TABLES [J].
BROSS, I .
BIOMETRICS, 1954, 10 (04) :478-486
[8]   Two distinc neuroanatomica subtypes of schizophrenia revealed using machine learning [J].
Chand, Ganesh B. ;
Dwyer, Dominic B. ;
Erus, Guray ;
Sotiras, Aristeidis ;
Varol, Erdem ;
Srinivasan, Dhivya ;
Doshi, Jimit ;
Pomponio, Raymond ;
Pigoni, Alessandro ;
Dazzan, Paola ;
Kahn, Rene S. ;
Schnack, Hugo G. ;
Zanetti, Marcus V. ;
Meisenzahl, Eva ;
Busatto, Geraldo F. ;
Crespo-Facorro, Benedicto ;
Pantelis, Christos ;
Wood, Stephen J. ;
Zhuo, Chuanjun ;
Shinohara, Russell T. ;
Shou, Haochang ;
Fan, Yong ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Satterthwaite, Theodore D. ;
Koutsouleris, Nikolaos ;
Wolf, Daniel H. ;
Davatzikos, Christos .
BRAIN, 2020, 143 :1027-1038
[9]  
Falakshahi H, 2020, ARXIV200101707
[10]  
Frenay B, 2014, 2014 EUR S ART NEUR